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Abstract – The Benes network consists of back-to-back butterflies. There exist a number of topological 
representations that are used to describe butterfly - like architectures. We identify a new topological representation 
of Benes network. The significance of this representation is demonstrated by solving two problems, one related to 
VLSI layout and the other related to robotics. An important VLSI layout network problem is to produce the smallest 
possible grid area for realizing a given network. We propose an elegant VLSI layout of r-dimensional Benes 
networks using this representation. The area of this layout is O(22r) whereas the lower bound for the area of the 
VLSI layout of Benes networks is O(22r). This lower bound is estimated by applying Thompson result.  
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1.0  Introduction and Background 
 
A multistage network consists of a series of switch stages and interconnection patterns, which allows N 
inputs to be connected to N outputs. A multistage network uses dynamic interconnection to allow 
communication paths to be established as needed for the transfer of information between I/O nodes. In 
massively parallel computing, interconnection networks remain to be one of the most critical components. 
Multistage interconnection networks (MINs) have long been used as the communication network for 
parallel computers. The main advantages of MINs are their high bandwidth O(N), low diameter O(log N), 
and constant degree switches. Multistage networks have been used in commercial machines, such as the 
BBN, CM 5 and Meiko [8]. The butterfly and Benes networks are important multistage interconnection 
networks, which possess attractive topologies for communication networks [10]. They have been used in 
parallel computing systems such as IBM SP1/SP2, MIT Transit Project, and NEC Cenju-3, and used as 
well in the internal structures of optical couplers, e.g., star couplers [10, 13].  

We represent networks as undirected graphs whose nodes represent processors and whose edges 
represent inter-processor communication links. An embedding of undirected graph, G, in another, H, 
comprises a one-to-one assignment of the nodes in G to nodes in H, plus a routing of each edge of G 
within H that is, an assignment of a path in H connecting the images of the endpoints of each edge in G.  

The set of nodes V of an r-dimensional butterfly correspond to pairs [w, i], where i is the 
dimension or level of a node (0 ≤  i ≤  r) and w is an r-bit binary number that denotes the row of the node. 
Two nodes < w, i > and < w’, i’ > are linked by an edge if and only if i’ = i + 1 and either:  

1. w and w’ are identical, or 
2. w and w’ differ in precisely the ith bit.  

The edges in the network are undirected. An r-dimensional butterfly is denoted by BF(r).  



An r-dimensional Benes network has 2r+1 levels, each level with 2r nodes. The level zero to level 
r vertices in the network form an r-dimensional butterfly. The middle level of the Benes network is shared 
by these butterflies [9]. As butterfly is known for FFT, Benes is known for permutation routing 
(rearrangeable network). An r-dimensional Benes is denoted by B(r). Figure 1 shows a B(4) network. All 
the results in this paper are discussed only for Benes since the results corresponding to butterfly can be 
derived as a particular case. 

One of the important parameters used to evaluate parallel architectures is symmetry. Other 
considerations are: bisection width, wire length (layout aspects), existence of optimal communication 
techniques such as routing and broadcasting, node disjoint paths (fault tolerance), and recursive 
decomposition (or scalability). Symmetry is helpful for solving issues related to VLSI design. A VLSI 
layout for a network is characterized as an embedding within a two-dimensional grid, which assigns 
nodes of a graph G to points in the grid together with an (incidence preserving) assignment of the edges 
of G to paths in the grid. The paths of the layout are restricted to follow along grid tracks and are not 
allowed to overlap for any distance (although a vertical path segment may cross a horizontal path 
segment). If they change direction at this point, it is called a knock-knee [5]. In addition, the paths may 
not cross nodes to which they are not adjacent [2].  
 

1.1 Mathematical Definition of a VLSI Layout 
 
Following [1], a VLSI layout Ł(α, ρ) of an N-node graph G(V, E) in an m x n grid M, where N ≤  mn, is 
an embedding (α, ρ) of G into M[m, n] where α is a one – one mapping from V(G) into V(M) and ρ = 
{P(u, v) / (u, v) is an edge of E(G) and P(u, v) is a path of M joining α(u) and α(v)}. The routing paths of 
ρ collectively satisfy the following conditions: 
 

• Distinct routing paths in the grid are edge-disjoint, so that the embedding that embodies a layout 
has unit congestion in the grid.  

 
• A routing path P(u, v) traverses over no image node α(w) where w is in V(G) and w ≠ u, v.  

 
A VLSI layout problem of a graph G is to produce an area-efficient layout for G. It is shown that a VLSI 
layout problem of a forest of trees is NP - Complete [2]. The butterfly graphs have different 
representations including Omega network, the flip network, the baseline, and the reverse baseline 
networks. Each representation exhibits different characteristics [1, 5, 9, 13]. In other words, the butterfly 
network is drawn in different ways to exhibit different properties. In this paper, we introduce a new 
representation of Benes network, which helps solving the VLSI layout problem in Benes networks. We 
focus on laying out the Benes network on a square grid. Our aim is to produce an efficient VLSI layout of 
Benes without knock-knees. Our VLSI layout of B(r) is a square area. The area of this layout is (2(r+2) – 1) 
(2(r+2) – 1) which is O(22r). This is satisfactory since the lower bound of the area of a VLSI layout of B(r) 
is O(22r).  
 

2.0  Proposed VLSI Representation of Benes Network 
 
In this section, we discuss a representation of Benes network, which is suitable for VLSI layout. The 
proposed representation is shown in Figure 2. To avoid confusion between the two representations of 
Figure 1 and Figure 2, the representation in Figure 1 will be called Rearrangeable representation of 
Benes and the representation in Figure 2 will be called VLSI representation of Benes. A similar 
representation for butterfly is studied by Dinitz et. al. [5, 15].  

The proposed VLSI representation of Benes network is constructed recursively as follows: Two 
(r-1)-dimensional Benes networks B(r – 1) form mirror images with respect to an array of level 0 and 
level 2r nodes. Each 4-cycle is drawn as a diamond. Particularly, the level 0 and level 2r nodes are the 



vertices belonging to chordless 4-cycles in the diamond formation bridging the two (r-1)-dimensional 
Benes networks B(r – 1).  See Figure 2. This representation provides a structural visualization, an in-
depth understanding about the cyclic properties and the organization of spanning trees of Benes networks. 

The description of cyclic structures is an important problem in graph theory. The following 
observations of Benes network, which are similar to butterfly, are straightforward from the VLSI 
representation given in Figure 2.  
 
Lemma 2.1 [10]: 
 

1. A Benes network is bipartite. 
2. No two 4-cycles of B(r) have a common edge. 
3. The edge set E of B(r) is disjoint union of 4-cycles, that is, there are )2(22 −× rr  number of 4-

cycles. □  
 

 
 

Figure 1: Rearrangeable representation of Benes B(4) 
 



Even though the Benes network consists of back-to-back butterflies, there is a subtle structural difference 
between Benes and butterfly. See Figure 7. The removal of level 0 nodes of BF(r) leaves two disjoint 
copies of BF(r – 1). In the same way, the removal of level r nodes of BF(r) leaves two disjoint copies of 
BF(r – 1). This recursive structure can be viewed in another way. The removal of level 0 nodes and level r 
nodes (removal of all nodes of degree 2) of BF(r) leaves 4 disjoint copies of a BF(r – 2). However the 
removal of level 0 nodes and level 2r nodes (removal of all nodes of degree 2) of B(r) leaves 2 disjoint 
copies of a B(r – 1). In other words, the butterfly has dual symmetry, which the Benes does not have.  
 

 
 

 
Figure 2: VLSI representation of Benes B(4).  

 
 
Lemma 2.2: The Rearrangeable and VLSI representations of Benes are isomorphic. 
 
Proof: We apply induction on the dimension of Benes B(r). Both 1-dimesional Rearrangeable 
representation and 1-dimesional VLSI representation are cycles of length 4. Let us assume that (k-1)-
dimensional Rearrangeable representation and (k-1)-dimensional VLSI representation of Benes are 
isomorphic.  

Now let us show that the k-dimensional Rearrangeable representation and the k-dimensional 
VLSI representation of Benes are isomorphic. Remove nodes of degree 2 (level 0 nodes and level 2k 
nodes) from both k-dimensional Rearrangeable representation and k-dimensional VLSI representation. By 



induction hypothesis, the resultant Benes networks are isomorphic. The nodes of degree 2 (level 0 nodes 
and level 2k nodes) of both k-dimensional Rearrangeable representation and k-dimensional VLSI 
representation are organized in the same way as follows: The level 0 nodes [0u2···uk,0] and [1u2···uk,0] are 
adjacent to level 1 nodes [0u2···uk,1] and [1u2···uk,1] respectively. In the same way, level 2k nodes 
[0u2···uk,2k] and [1u2···uk,2k] are adjacent to level (2k – 1) nodes [0u2···uk,2k – 1] and [1u2···uk,2k – 1] 
respectively. Moreover, these nodes form a chordless cycle of length 4. These 4-cycles are edge disjoint 
with the rest of the graph. Hence both Rearrangeable representation and VLSI representation are 
isomorphic. □  

 
3.0  A Simple VLSI Layout of Benes Network 

 
Avior et. al. [1] have estimated that the r-dimensional butterfly network can be laid out in area (1 + 
o(1))22r while no layout of the network can have area smaller than (1 – o(1)) 22r. Dinitz et. al. [5, 15] have 
presented a layout whose encompassing rectangle is of area (1/2) 22r+o(22r), but this rectangle is 45o 
slanted w. r. t. the grid axes. There are different models of VLSI layouts for butterfly-like architectures 
[14, 15, 16]. Even though Benes network consists of back-back butterflies, these models of VLSI layouts 
of butterfly are not extendable to Benes. In this paper we provide a simple square VLSI layout without 
knock-knees for Benes which is of course applicable to butterfly networks too.  

In the VLSI representation of Benes network, each 4-cycle is represented as a diamond. The 4-
cycles with level r nodes of B(r) are in pairs. We call them “Nested diamonds”. Other 4-cycles are called 
“Normal diamonds”. In Figure 2, the six vertices [0000,3], [0000,4], [0000,5], [0001,3], [0001,4] and 
[0001,5] form a pair of nested diamonds. Notice that a pair of nested diamonds contains 6 nodes inducing 
two 4-cycles. Similarly, the four vertices [0000,2], [0000,3], [0010,2] and [0010,3] form a normal 
diamond.  
 
VLSI Layout Algorithm and its Proof of Correctness  
 
Our construction of VLSI layout of Benes is done in 3 steps: 
 
Step 1: Draw the VLSI representation of Benes as in Figure 3. 
 
Step 2: Each normal diamond is stretched to a rectangle as in Figure 4. 
 
Step 3: Each pair of Nested diamonds is stretched along the grid lines as in Figure 5.  
 

 
 

Figure 3: Step 1 – Drawing Benes B(3) on a Grid 



 
 

Figure 4: Step 2 - A Normal Diamond is stretched to a rectangle of the grid. 
 

 
 

Figure 5: Step 3 - A pair of Nested Diamonds is stretched on grid axis. 
 
The resultant layout is given in Figure 6. Now we claim that this grid embedding is indeed a VLSI layout. 
The proof of correctness is straightforward using induction hypothesis. Suppose it is true for (k – 1)-
dimensional Benes. For a k-dimensional Benes, it is enough to consider the 4-cycles (normal diamonds) 
at level 0 and level 2k nodes. By the very structure of the VLSI representation of Benes, it is easy to see 
that the 4-cycles (normal diamonds) at level 0 and level 2k nodes can be drawn as a rectangle without 
violating VLSI requirements.  
 

 
 
 

Figure 6: A VLSI layout of Benes B(3) 
 
Area of this layout and Lower Bound for the Area of the VLSI Layout of B(r)   
 
Let us now estimate the area of this VLSI layout of B(r). All the level 0 and level 2r nodes are placed in 
one horizontal grid axis with exactly one vertical grid axis between any two of these nodes. In the same 
way, all the level r nodes are placed in a vertical grid axis with exactly 3 horizontal grid axes between any 
two of these nodes. This observation is straightforward and it can be easily proved by induction. Thus, the 
area of this layout of B(r) is (2(r+2) – 1) (2(r+2) – 1) which is O(22r). Thompson [12] showed that, up to a 
constant factor, the layout area can be no less than the square of the bisection width. Since the bisection 
width of r-dimensional Benes network is O(2r) [8], the lower bound for the area of VLSI layout of Benes 
networks is O(22r).  



4.0  Conclusion 
 
Even though this paper focuses on Benes networks, all the results are applicable to butterfly too. We 
provide a simple VLSI layout without knock-knees for Benes network. This VLSI layout of B(r) is laid in 
a square area. The area matches with the lower bound up to a constant factor.  

Though wrapped butterfly is a butterfly-like architecture, it is not straightforward to extend these 
results to wrapped butterfly. The NP complete problems such as achromatic number problem and 
minimum crossing number problem [2,6] are open for Benes and butterfly networks. It is interesting to 
see whether these problems can be solved using this representation. □  
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