

US008898611B2

(12) United States Patent

Konda

(10) Patent No.:

US 8,898,611 B2

(45) **Date of Patent:**

Nov. 25, 2014

(54) VLSI LAYOUTS OF FULLY CONNECTED GENERALIZED AND PYRAMID NETWORKS WITH LOCALITY EXPLOITATION

(75) Inventor: Venkat Konda, San Jose, CA (US)

(73) Assignee: Konda Technologies Inc., San Jose, CA

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 116 days.

(21) Appl. No.: 13/502,207

(22) PCT Filed: Oct. 16, 2010

(86) PCT No.: PCT/US2010/052984

§ 371 (c)(1),

(2), (4) Date: **Apr. 16, 2012**

(87) PCT Pub. No.: WO2011/047368

PCT Pub. Date: Apr. 21, 2011

(65) **Prior Publication Data**

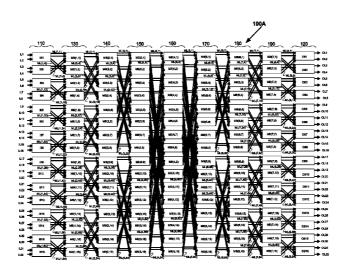
US 2012/0269190 A1 Oct. 25, 2012

Related U.S. Application Data

- (60) Provisional application No. 61/252,603, filed on Oct. 16, 2009, provisional application No. 61/252,609, filed on Oct. 16, 2009.
- (51) **Int. Cl. G06F 17/50** (2006.01)
- (52) **U.S. CI.**CPC *G06F 17/509* (2013.01); *G06F 17/5054*(2013.01)
 USPC 716/121

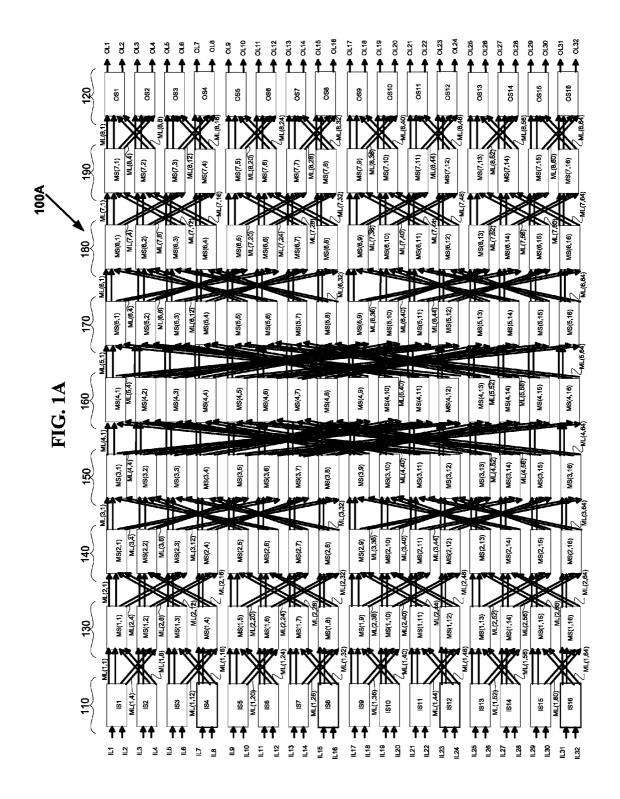
(56) References Cited

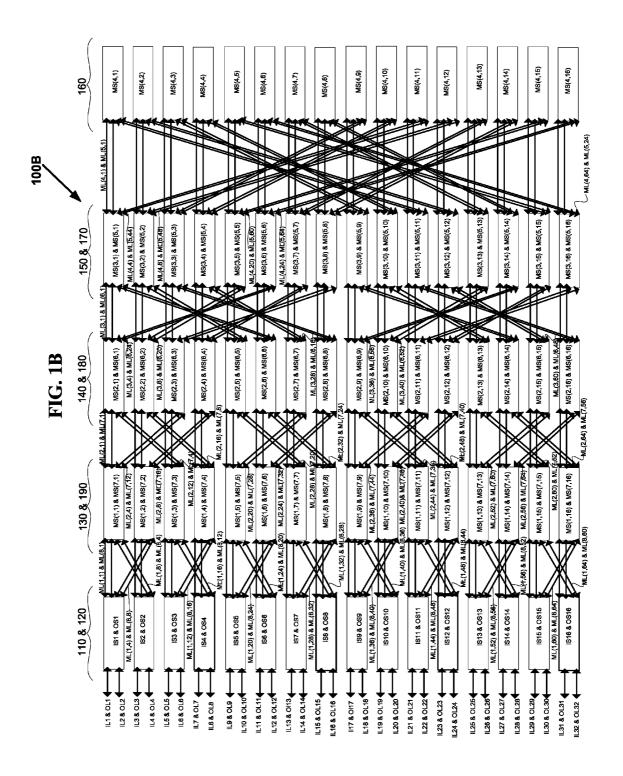
U.S. PATENT DOCUMENTS

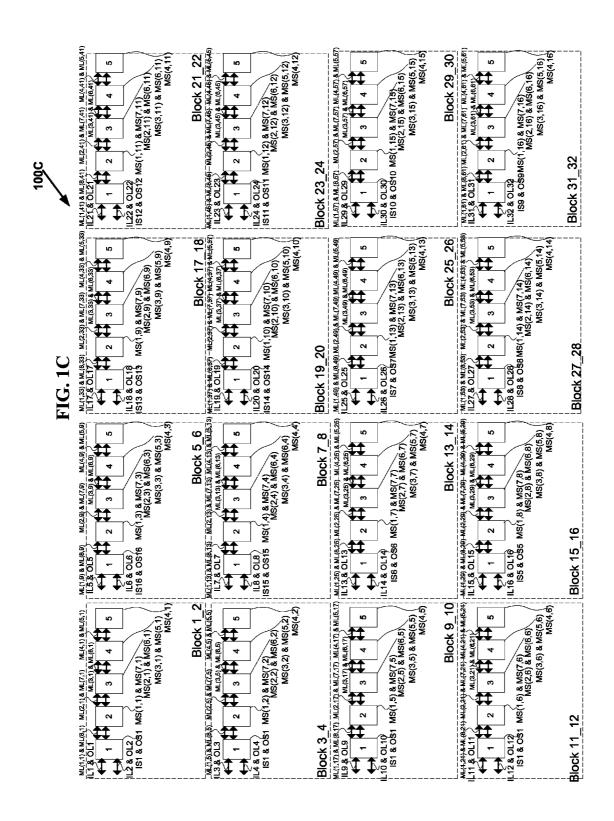

Primary Examiner — Suchin Parihar

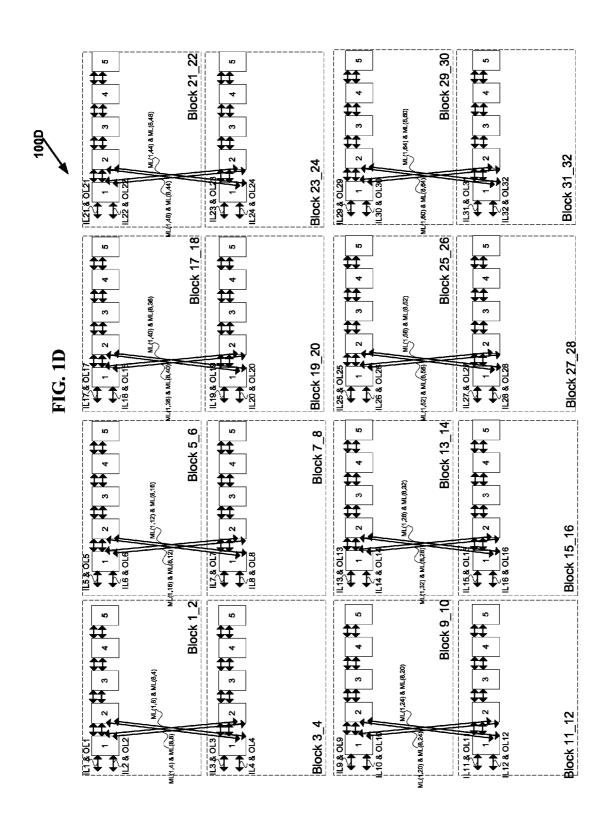
(57) ABSTRACT

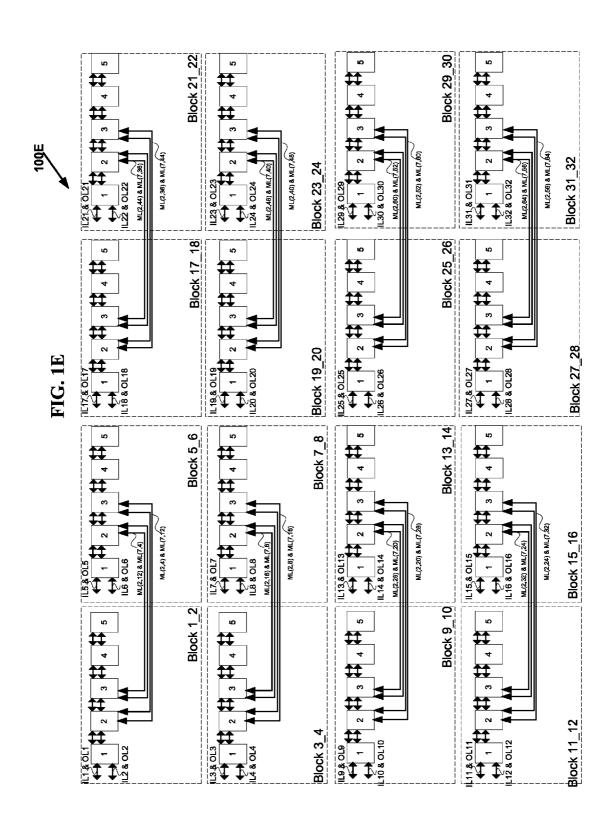
VLSI layouts of generalized multi-stage and pyramid networks for broadcast, unicast and multicast connections are presented using only horizontal and vertical links with spacial locality exploitation. The VLSI layouts employ shuffle exchange links where outlet links of cross links from switches in a stage in one sub-integrated circuit block are connected to inlet links of switches in the succeeding stage in another sub-integrated circuit block so that said cross links are either vertical links or horizontal and vice versa. Furthermore the shuffle exchange links are employed between different subintegrated circuit blocks so that spacially nearer sub-integrated circuit blocks are connected with shorter links compared to the shuffle exchange links between spacially farther sub-integrated circuit blocks. In one embodiment the subintegrated circuit blocks are arranged in a hypercube arrangement in a two-dimensional plane. The VLSI layouts exploit the benefits of significantly lower cross points, lower signal latency, lower power and full connectivity with significantly fast compilation.

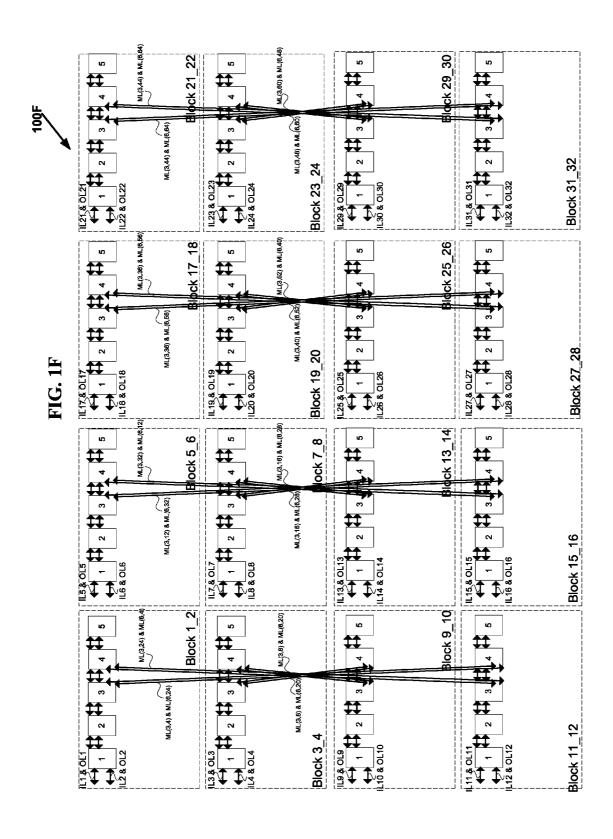

The VLSI layouts with spacial locality exploitation presented are applicable to generalized multi-stage and pyramid networks, generalized folded multi-stage and pyramid networks, generalized butterfly fat tree and pyramid networks, generalized multi-link multi-stage and pyramid networks, generalized folded multi-link multi-stage and pyramid networks, generalized multi-link butterfly fat tree and pyramid networks, generalized multi-link butterfly fat tree and pyramid networks, generalized hypercube networks, and generalized cube connected cycles networks for speedup of s≥1. The embodiments of VLSI layouts are useful in wide target applications such as FPGAs, CPLDs, pSoCs, ASIC placement and route tools, networking applications, parallel & distributed computing, and reconfigurable computing.

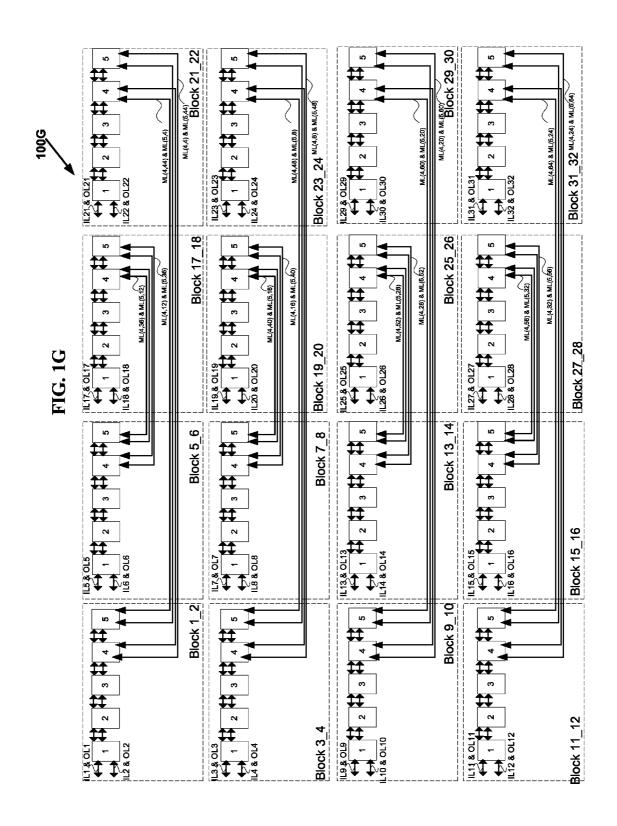

20 Claims, 43 Drawing Sheets

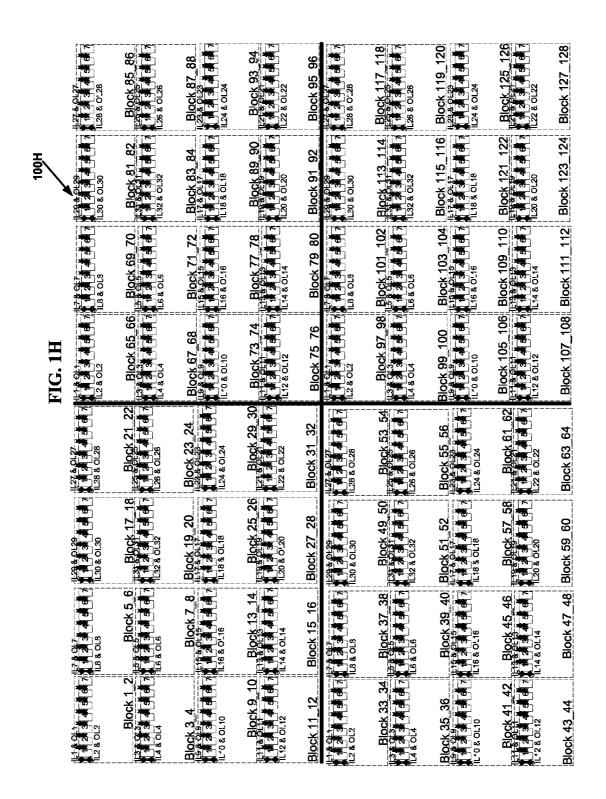


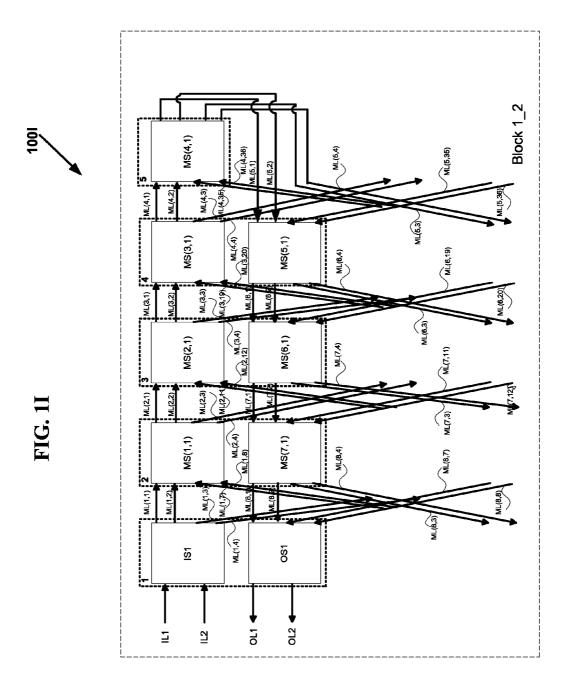

US 8,898,611 B2Page 2

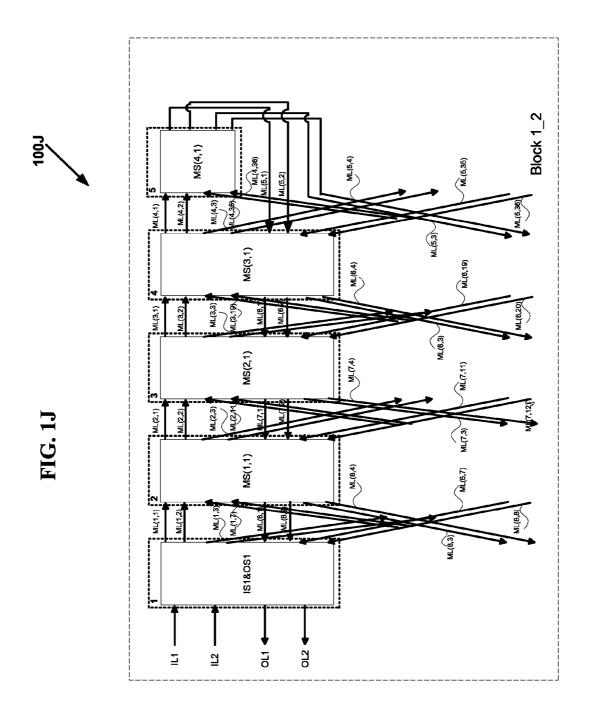

(56)	References Cited			8,170,040 B2 8,269,523 B2		Konda 370/408
	U.	.S. PATENT	DOCUMENTS	8,270,400 B2	9/2012	Konda
			Muthukrishnan et al 370/411 Lee	-,,		Wong 326/41
	· · · · · ·			* cited by examine	•	

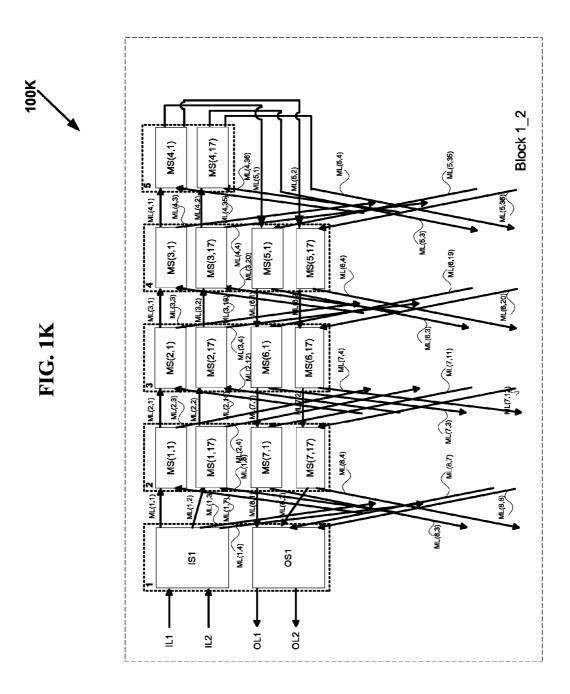


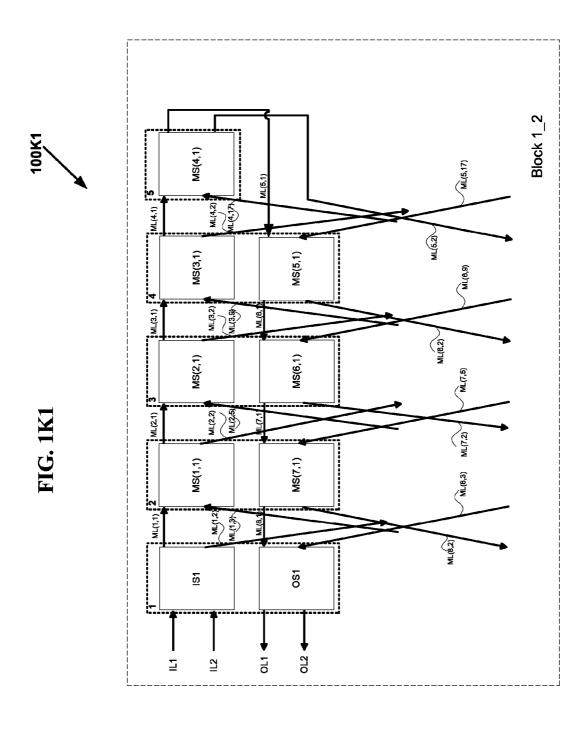


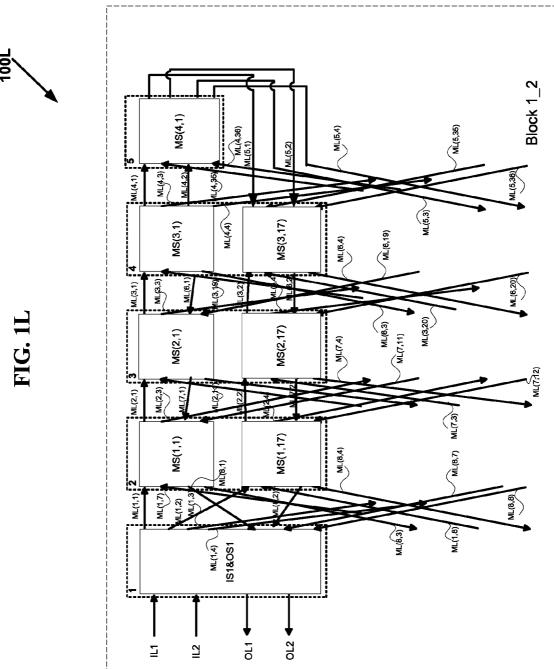


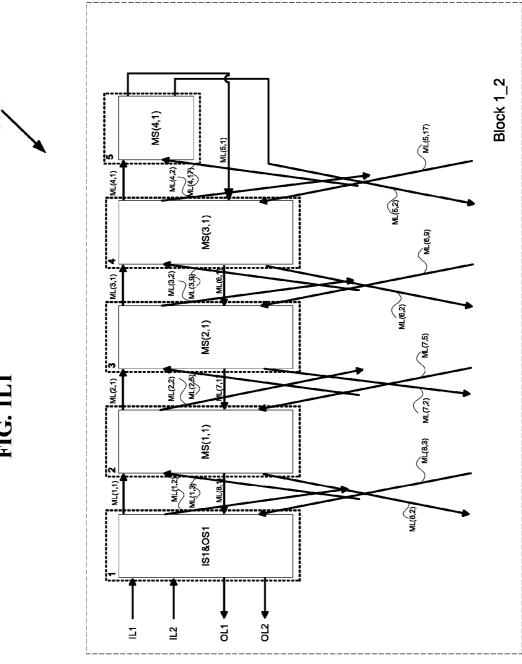


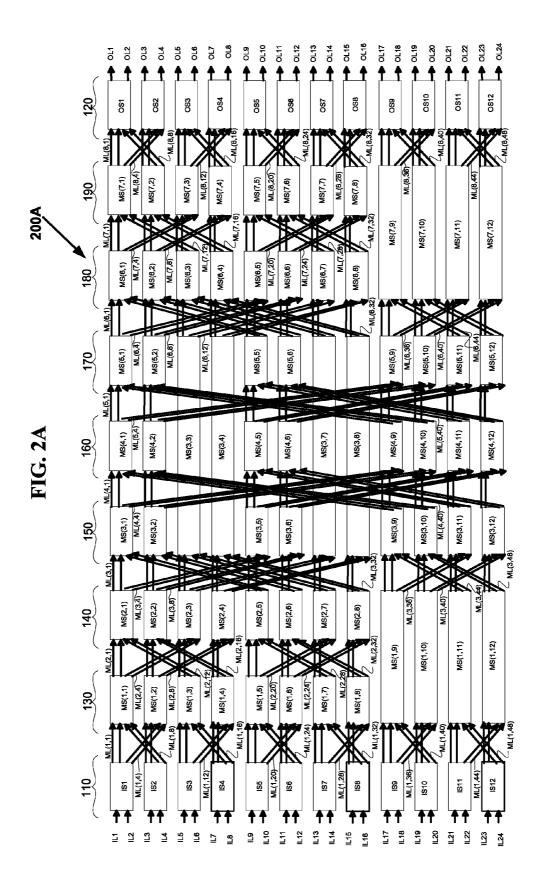


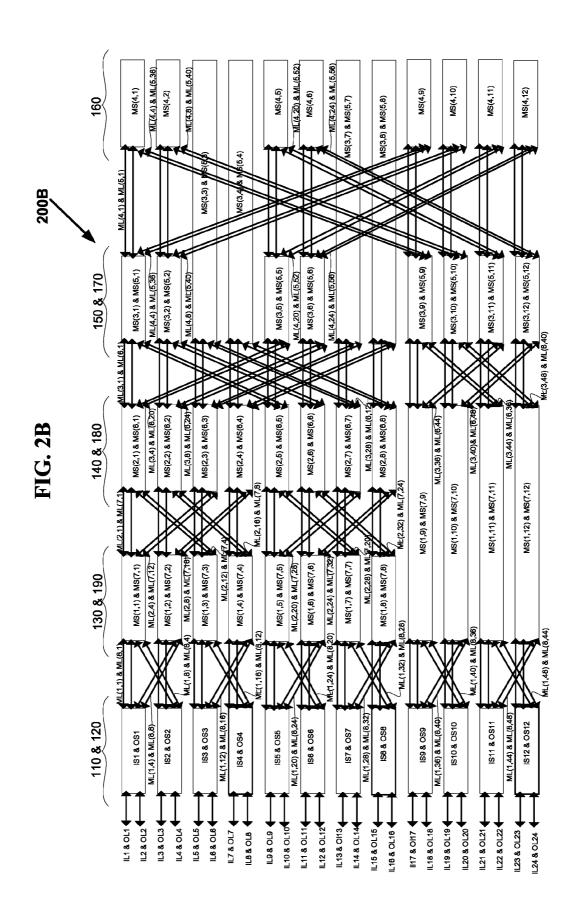


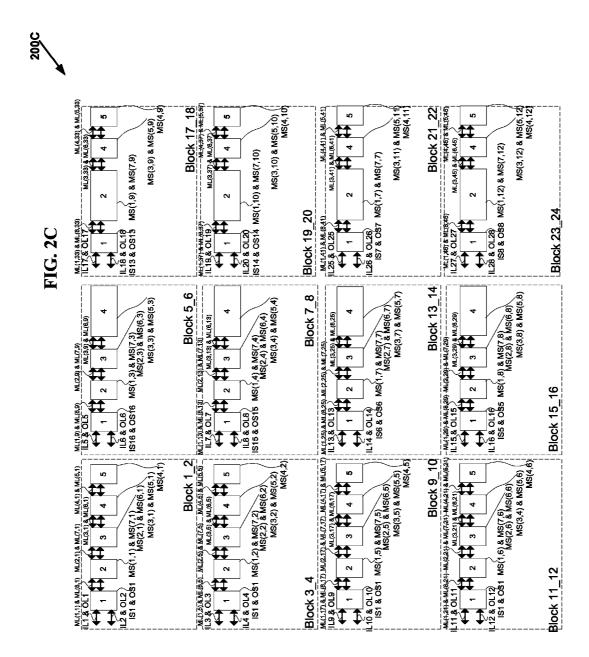


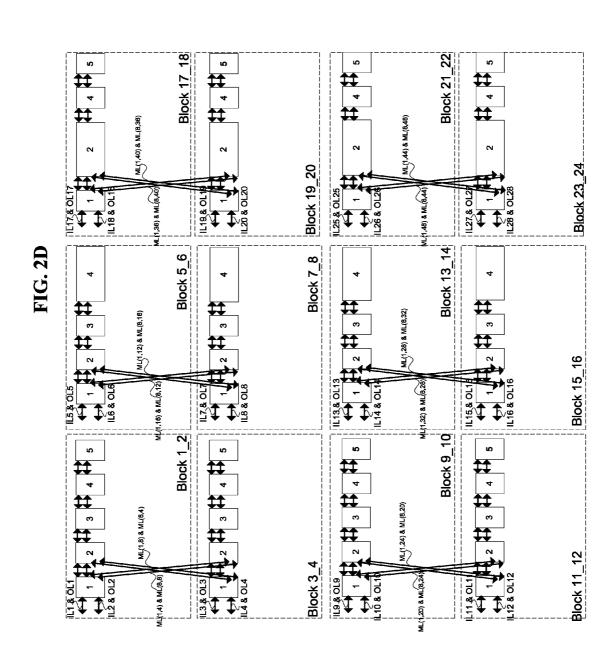


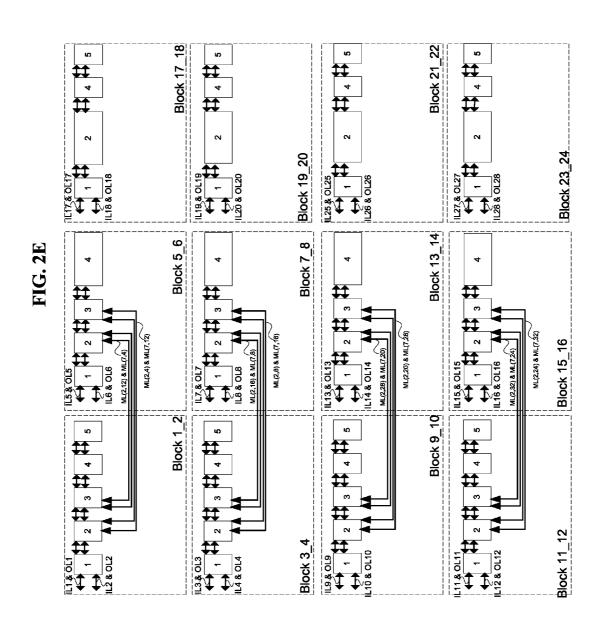


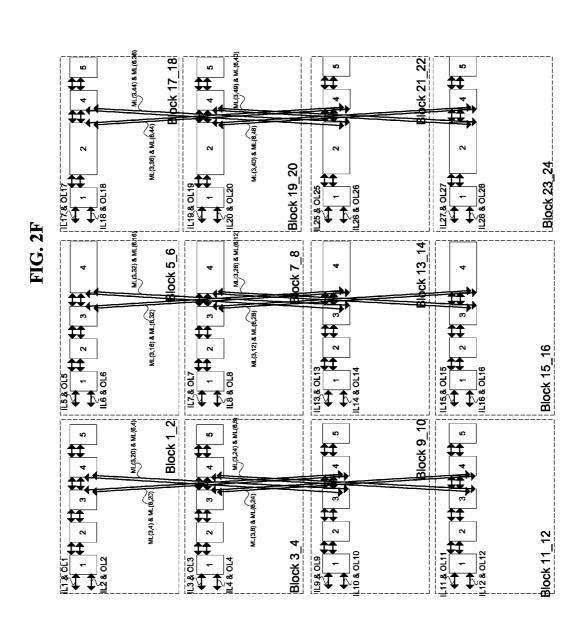


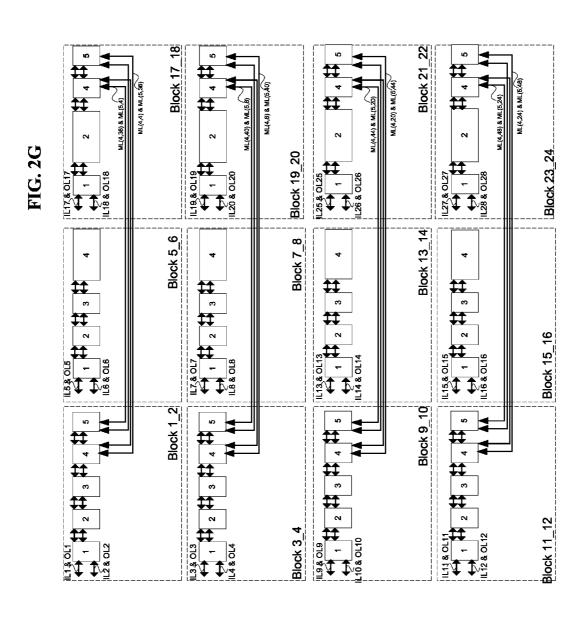


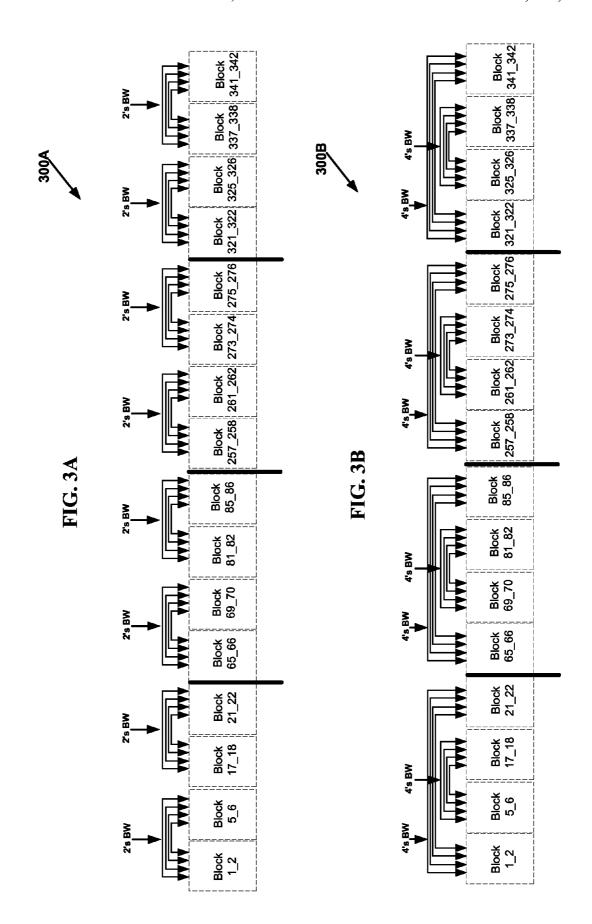


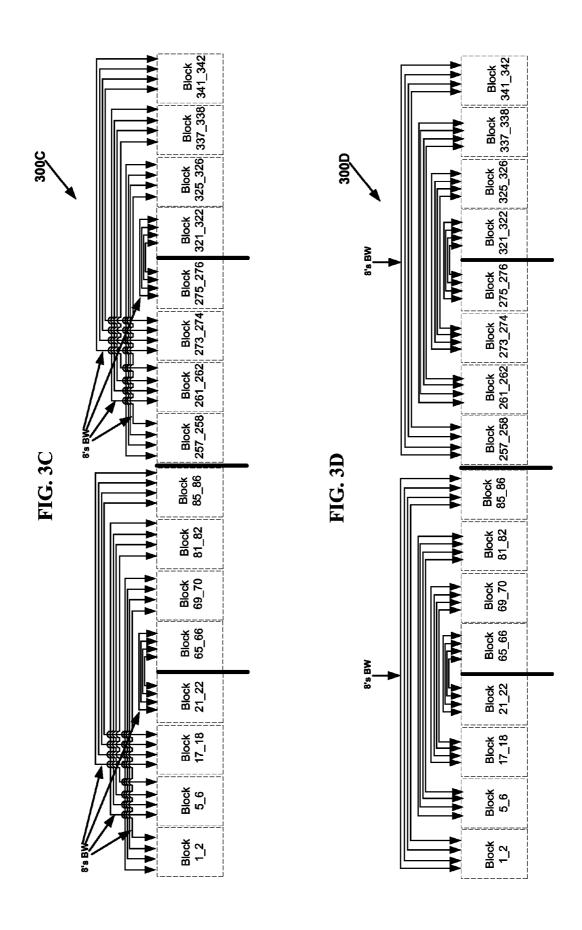


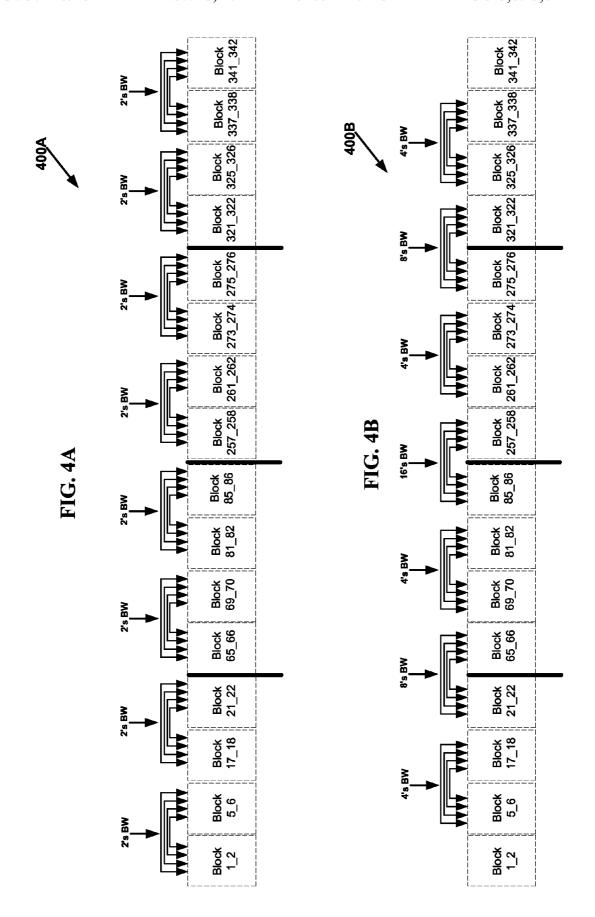


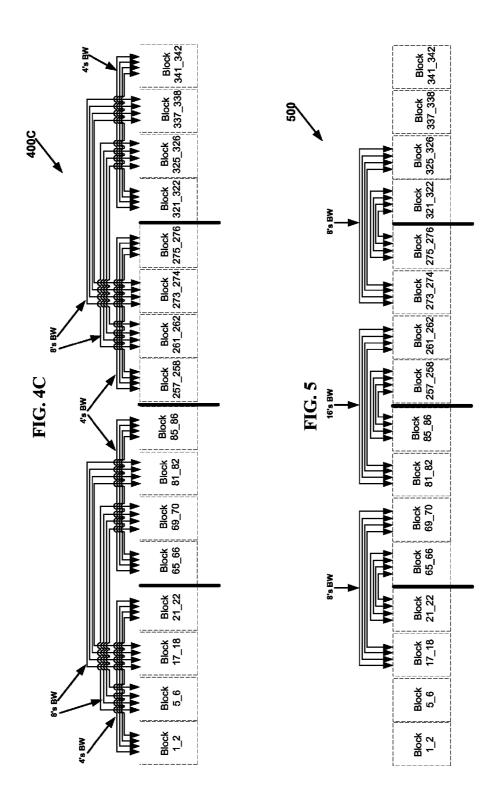


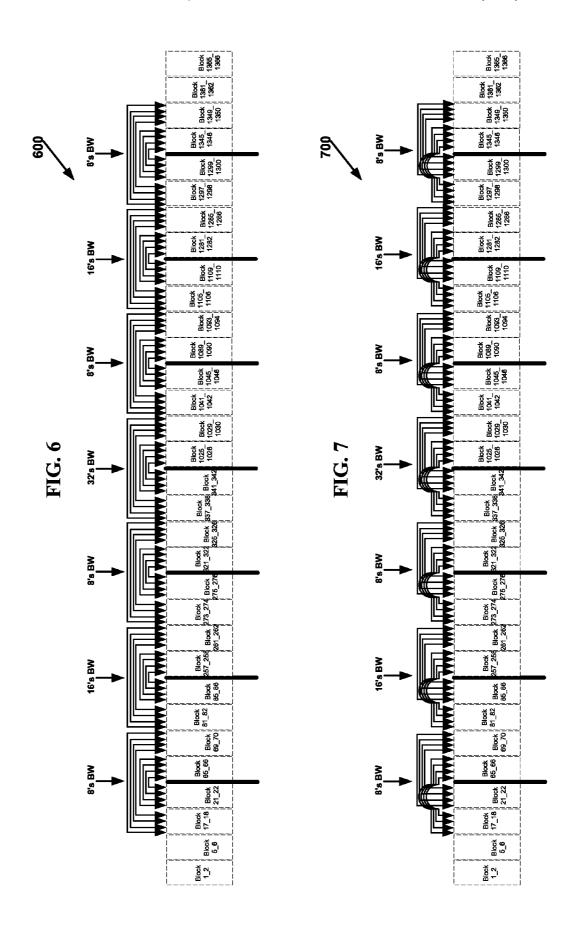


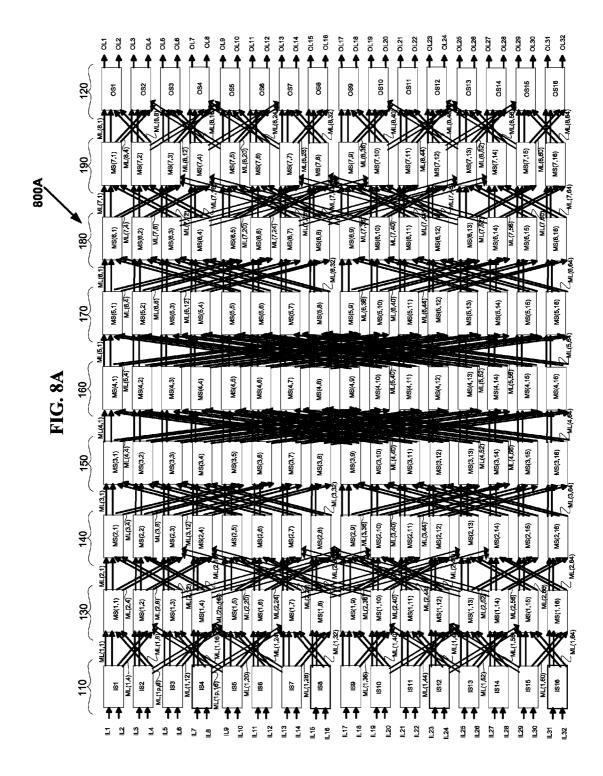


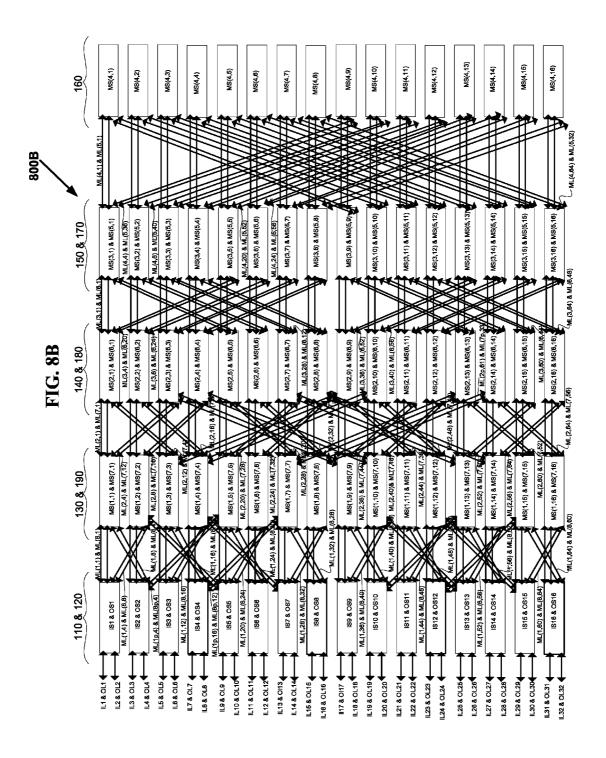


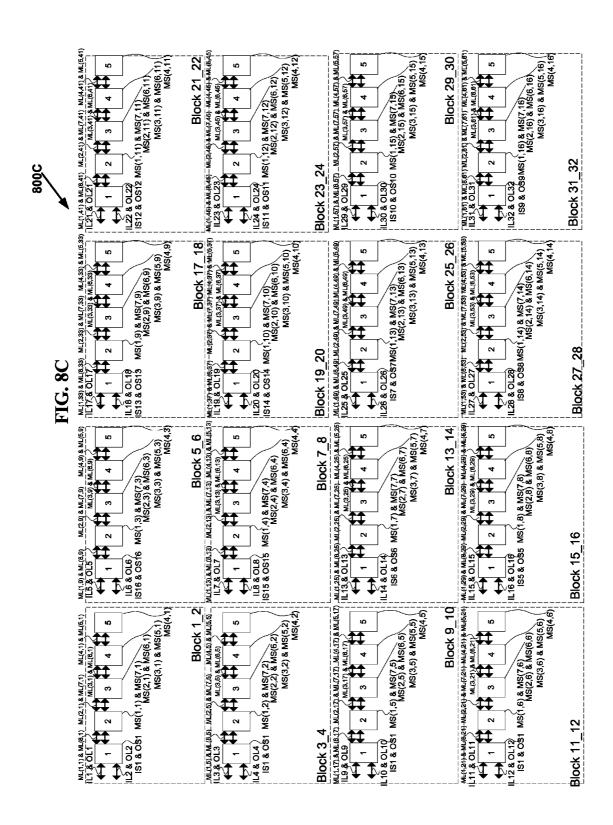


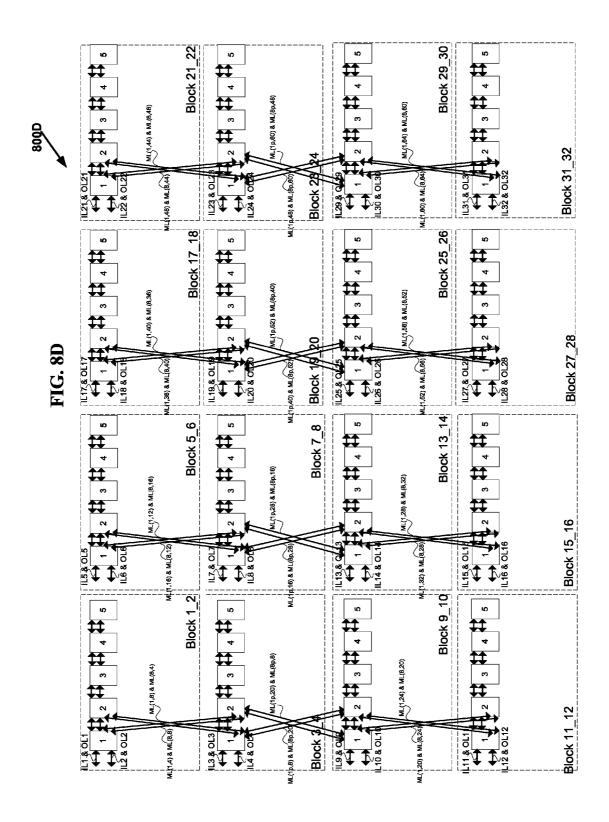


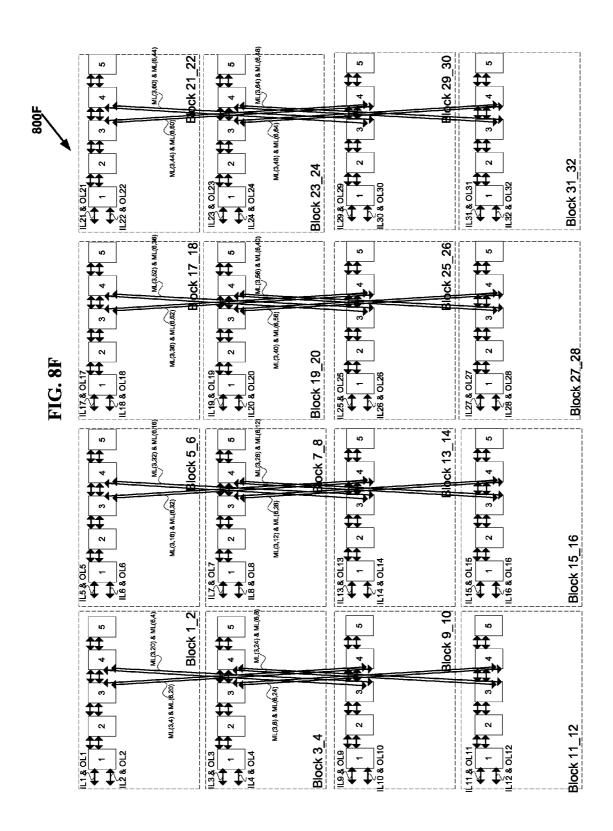


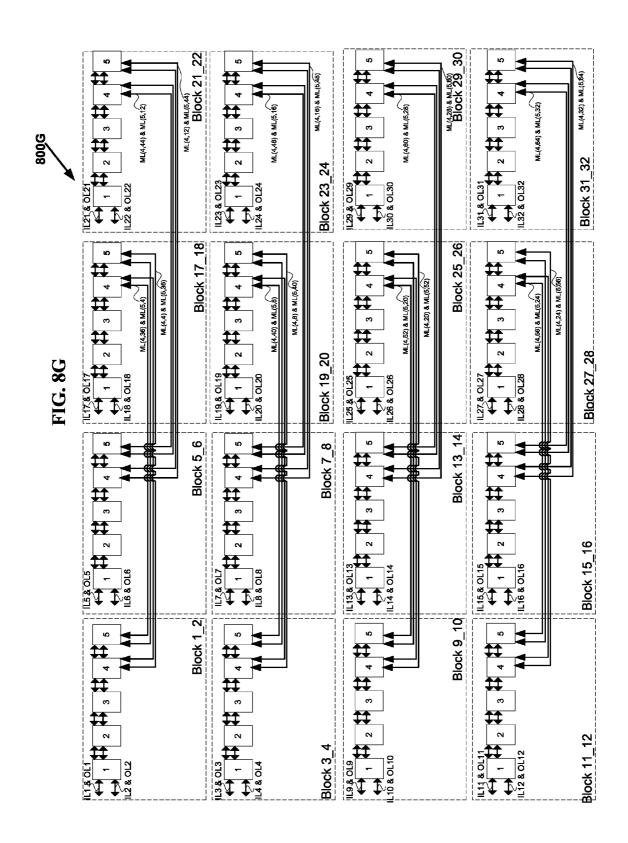


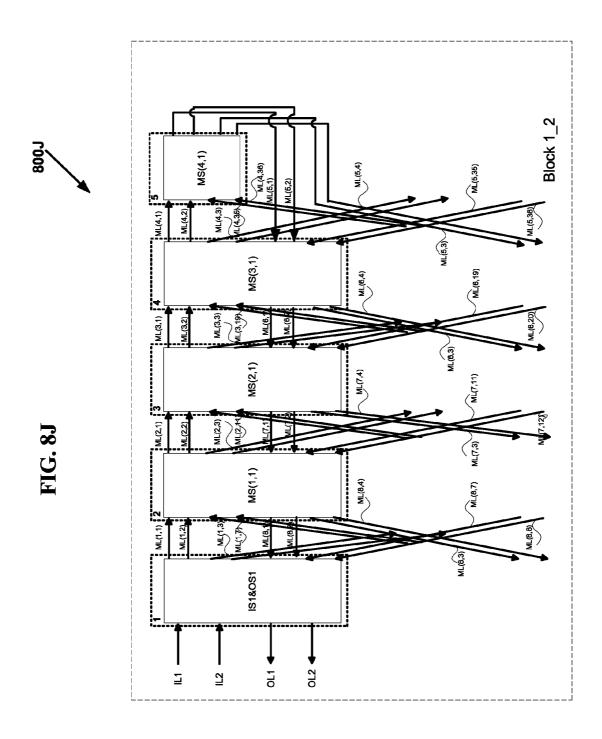


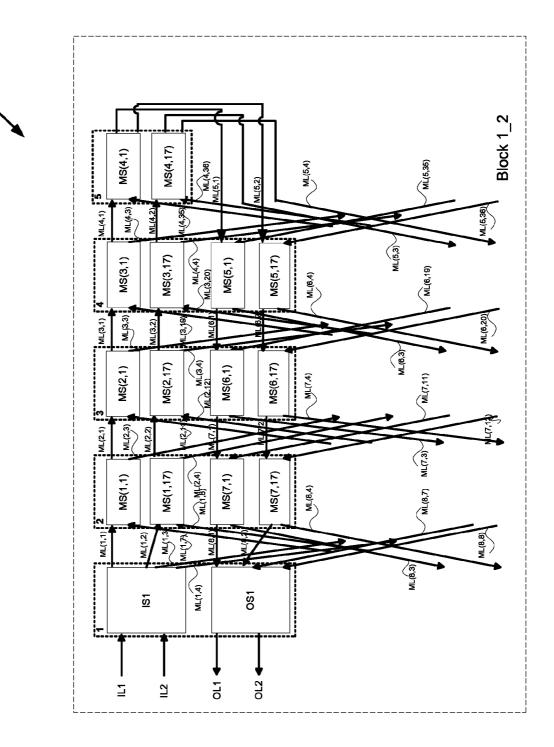


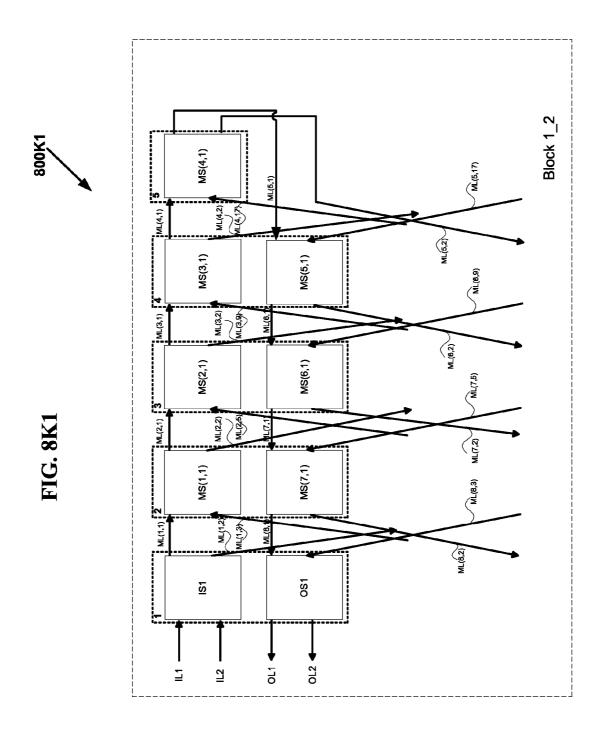


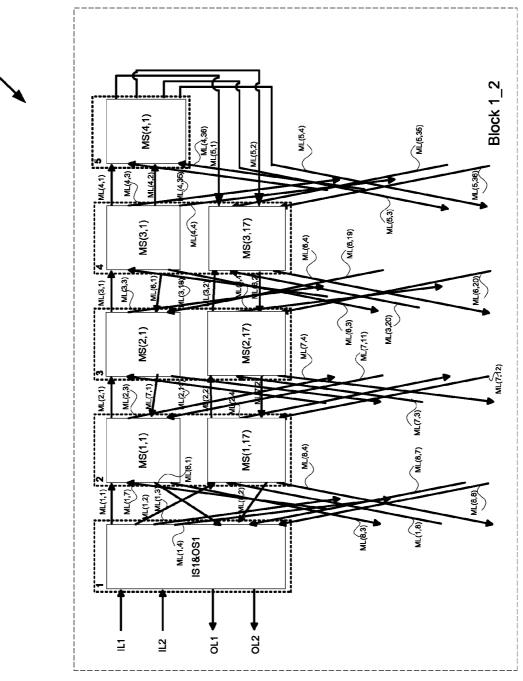




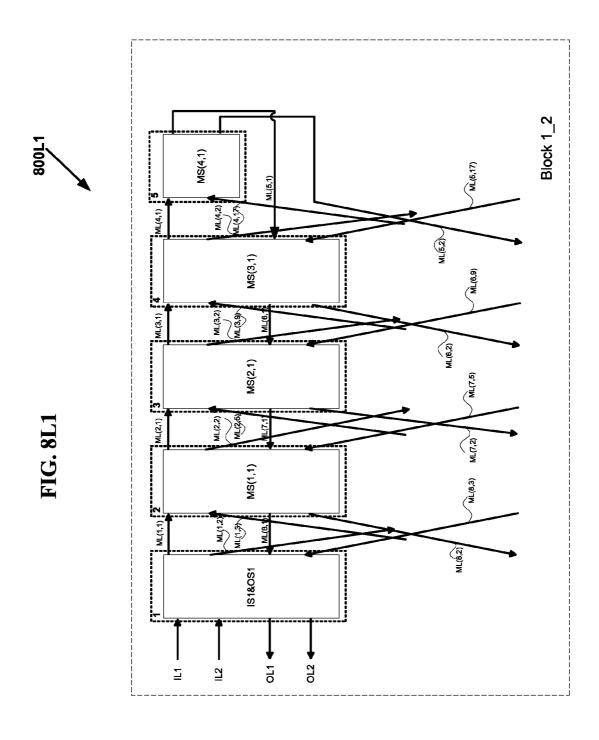


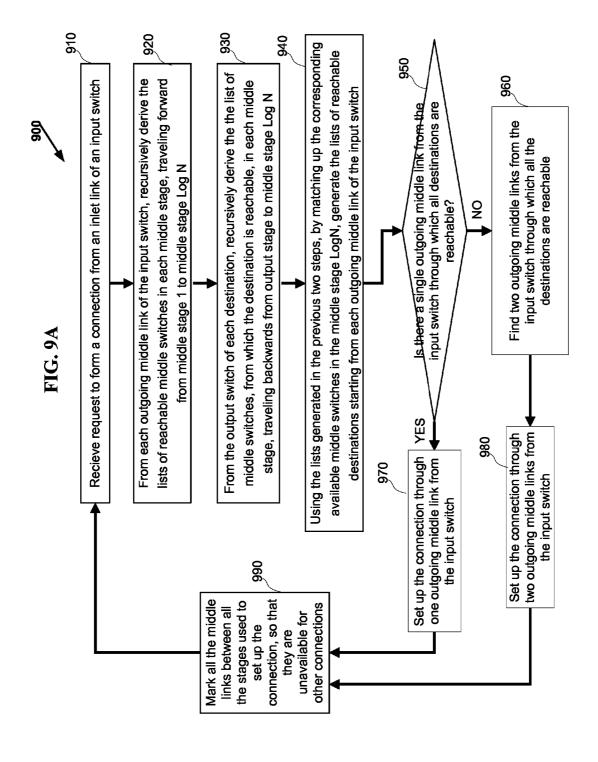






Block 1_2 MS(5,1) MS(6,1) MS(7,1) OS1 <u>8</u> 2





IG. 8L

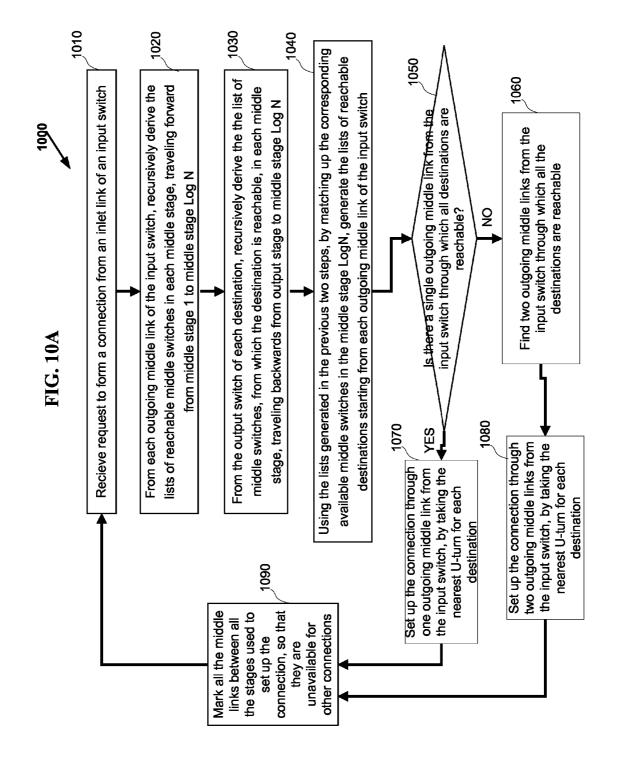


FIG. 11A

C(1,1)
C(1,1)
C(1,2)
C(2,1)
C(2,1)
FIG. 11A2

(Prior Art)

IL1
DCP(1,1)
C(1,2)
C(2,2)
C(2,1)
C(2,

THOOM

CP(1,1) CP(1,2)

CP(2,1) CP(2,2)

OL1 OL2

FIG. 11A1

(Prior Art)

1100A3

THOOM3

FIG. 11A3

VLSI LAYOUTS OF FULLY CONNECTED GENERALIZED AND PYRAMID NETWORKS WITH LOCALITY EXPLOITATION

CROSS REFERENCE TO RELATED APPLICATIONS

This application is Continuation In Part PCT Application to and incorporates by reference in its entirety the U.S. Provisional Patent Application Ser. No. 61/252,603 entitled 10 "VLSI LAYOUTS OF FULLY CONNECTED NETWORKS WITH LOCALITY EXPLOITATION" by Venkat Konda assigned to the same assignee as the current application, filed Oct. 16, 2009.

This application is Continuation In Part PCT Application 15 to and incorporates by reference in its entirety the U.S. Provisional Patent Application Ser. No. 61/252,609 entitled "VLSI LAYOUTS OF FULLY CONNECTED GENERALIZED AND PYRAMID NETWORKS" by Venkat Konda assigned to the same assignee as the current application, filed 20 Oct. 16, 2009.

This application is related to and incorporates by reference in its entirety the U.S. application Ser. No. 12/530,207 entitled "FULLY CONNECTED GENERALIZED MULTI-STAGE NETWORKS" by Venkat Konda assigned to the 25 same assignee as the current application, filed Sep. 6, 2009, the U.S. Provisional Patent Application Ser. No. 60/905,526 entitled "LARGE SCALE CROSSPOINT REDUCTION WITH NONBLOCKING UNICAST & MULTICAST IN ARBITRARILY LARGE MULTI-STAGE NETWORKS" 30 by Venkat Konda assigned to the same assignee as the current application, filed Mar. 6, 2007, and the U.S. Provisional Patent Application Ser. No. 60/940,383 entitled "FULLY CONNECTED GENERALIZED MULTI-STAGE NETWORKS" by Venkat Konda assigned to the same assignee as 35 the current application, filed May 25, 2007.

This application is related to and incorporates by reference in its entirety the U.S. application Ser. No. 12/601,273 entitled "FULLY CONNECTED GENERALIZED BUTTERFLY FAT TREE NETWORKS" by Venkat Konda 40 assigned to the same assignee as the current application, filed Nov. 22, 2009, the U.S. Provisional Patent Application Ser. No. 60/940,387 entitled "FULLY CONNECTED GENERALIZED BUTTERFLY FAT TREE NETWORKS" by Venkat Konda assigned to the same assignee as the current application, filed May 25, 2007, and the U.S. Provisional Patent Application Ser. No. 60/940,390 entitled "FULLY CONNECTED GENERALIZED MULTI-LINK BUTTERFLY FAT TREE NETWORKS" by Venkat Konda assigned to the same assignee as the current application, filed May 25, 2007 50

This application is related to and incorporates by reference in its entirety the U.S. application Ser. No. 12/601,274 entitled "FULLY CONNECTED GENERALIZED MULTI-LINK MULTI-STAGE NETWORKS" by Venkat Konda assigned to the same assignee as the current application, filed 55 Nov. 22, 2009, the U.S. Provisional Patent Application Ser. No. 60/940,389 entitled "FULLY CONNECTED GENER-ALIZED REARRANGEABLY NONBLOCKING MULTI-LINK MULTI-STAGE NETWORKS" by Venkat Konda assigned to the same assignee as the current application, filed 60 May 25, 2007, the U.S. Provisional Patent Application Ser. No. 60/940,391 entitled "FULLY CONNECTED GENER-ALIZED FOLDED MULTI-STAGE NETWORKS" by Venkat Konda assigned to the same assignee as the current application, filed May 25, 2007 and the U.S. Provisional Patent 65 Application Ser. No. 60/940,392 entitled "FULLY CON-NECTED GENERALIZED STRICTLY NONBLOCKING

2

MULTI-LINK MULTI-STAGE NETWORKS" by Venkat Konda assigned to the same assignee as the current application, filed May 25, 2007.

This application is related to and incorporates by reference in its entirety the U.S. application Ser. No. 12/601,275 entitled "VLSI LAYOUTS OF FULLY CONNECTED GENERALIZED NETWORKS" by Venkat Konda assigned to the same assignee as the current application, filed Nov. 22, 2009, and the U.S. Provisional Patent Application Ser. No. 60/940, 394 entitled "VLSI LAYOUTS OF FULLY CONNECTED GENERALIZED NETWORKS" by Venkat Konda assigned to the same assignee as the current application, filed May 25, 2007.

BACKGROUND OF INVENTION

Multi-stage interconnection networks such as Benes networks and butterfly fat tree networks are widely useful in telecommunications, parallel and distributed computing. However VLSI layouts, known in the prior art, of these interconnection networks in an integrated circuit are inefficient and complicated.

Other multi-stage interconnection networks including butterfly fat tree networks, Banyan networks, Batcher-Banyan networks, Baseline networks, Delta networks, Omega networks and Flip networks have been widely studied particularly for self routing packet switching applications. Also Benes Networks with radix of two have been widely studied and it is known that Benes Networks of radix two are shown to be built with back to back baseline networks which are rearrangeably nonblocking for unicast connections.

The most commonly used VLSI layout in an integrated circuit is based on a two-dimensional grid model comprising only horizontal and vertical tracks. An intuitive interconnection network that utilizes two-dimensional grid model is 2D Mesh Network and its variations such as segmented mesh networks. Hence routing networks used in VLSI layouts are typically 2D mesh networks and its variations. However Mesh Networks require large scale cross points typically with a growth rate of $O(N^2)$ where N is the number of computing elements, ports, or logic elements depending on the application

Multi-stage interconnection network with a growth rate of O(N×log N) requires significantly small number of cross points. U.S. Pat. No. 6,185,220 entitled "Grid Layouts of Switching and Sorting Networks" granted to Muthukrishnan et al. describes a VLSI layout using existing VLSI grid model for Benes and Butterfly networks. U.S. Pat. No. 6,940,308 entitled "Interconnection Network for a Field Programmable Gate Array" granted to Wong describes a VLSI layout where switches belonging to lower stage of Benes Network are layed out close to the logic cells and switches belonging to higher stages are layed out towards the center of the layout.

Due to the inefficient and in some cases impractical VLSI layout of Benes and butterfly fat tree networks on a semiconductor chip, today mesh networks and segmented mesh networks are widely used in the practical applications such as field programmable gate arrays (FPGAs), programmable logic devices (PLDs), and parallel computing interconnects. The prior art VLSI layouts of Benes and butterfly fat tree networks and VLSI layouts of mesh networks and segmented mesh networks require large area to implement the switches on the chip, large number of wires, longer wires, with increased power consumption, increased latency of the signals which effect the maximum clock speed of operation.

Some networks may not even be implemented practically on a chip due to the lack of efficient layouts.

SUMMARY OF INVENTION

When large scale sub-integrated circuit blocks with inlet and outlet links are layed out in an integrated circuit device in a two-dimensional grid arrangement, (for example in an FPGA where the sub-integrated circuit blocks are Lookup Tables) the most intuitive routing network is a network that 10 uses horizontal and vertical links only (the most often used such a network is one of the variations of a 2D Mesh network). A direct embedding of a generalized multi-stage network on to a 2D Mesh network is neither simple nor efficient.

In accordance with the invention, VLSI layouts of gener- 15 alized multi-stage and pyramid networks for broadcast, unicast and multicast connections are presented using only horizontal and vertical links with spacial locality exploitation. The VLSI layouts employ shuffle exchange links where outlet links of cross links from switches in a stage in one sub- 20 integrated circuit block are connected to inlet links of switches in the succeeding stage in another sub-integrated circuit block so that said cross links are either vertical links or horizontal and vice versa. Furthermore the shuffle exchange links are employed between different sub-integrated circuit 25 blocks so that spacially nearer sub-integrated circuit blocks are connected with shorter links compared to the shuffle exchange links between spacially farther sub-integrated circuit blocks. In one embodiment the sub-integrated circuit blocks are arranged in a hypercube arrangement in a two-30 dimensional plane. The VLSI layouts exploit the benefits of significantly lower cross points, lower signal latency, lower power and full connectivity with significantly fast compila-

The VLSI layouts with spacial locality exploitation pre- 35 sented are applicable to generalized multi-stage and pyramid networks $V(N_1, N_2, d, s) \& V_P(N_1, N_2, d, s)$, generalized folded multi-stage and pyramid networks V_{fold}(N₁, N₂, d, s) & $V_{fold-p}(N_1, N_2, d, s)$, generalized butterfly fat tree and butterfly fat pyramid networks $V_{\textit{bft}}(N_1, N_2, d, s) \& V_{\textit{bfp}}(N_1, 40)$ N₂, d, s), generalized multi-link multi-stage and pyramid networks $V_{mlink}(N_1, N_2, d, s) & V_{mlink-p}(N_1, N_2, d, s)$, generalized folded multi-link multi-stage and pyramid networks $V_{\textit{fold-mlink}}(N_1, N_2, d, s) \& V_{\textit{fold-mlink-p}}(N_1, N_2, d, s)$, generalized multi-link butterfly fat tree and butterfly fat pyramid 45 networks $V_{\textit{mlink-bfp}}(N_1, N_2, d, s)$ & $V_{\textit{mlink-bfp}}(N_1, N_2, d, s)$, generalized hypercube networks $V_{\textit{hcube}}(N_1, N_2, d, s)$, and generalized cube connected cycles networks V_{CCC}(N₁, N₂, d, s) for s=1, 2, 3 or any number in general. The embodiments of VLSI layouts are useful in wide target applications such as 50 FPGAs, CPLDs, pSoCs, ASIC placement and route tools, networking applications, parallel & distributed computing, and reconfigurable computing.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A is a diagram 100A of an exemplary symmetrical multi-link multi-stage network $V_{fold-mlink}(N,d,s)$ having a variation of inverse Benes connection topology of nine stages with N=32, d=2 and s=2, strictly nonblocking network for unicast connections and rearrangeably nonblocking network for arbitrary fan-out multicast connections, in accordance with the invention.

FIG. 1B is a diagram 100B of the equivalent symmetrical folded multi-link multi-stage network $V_{fold-mlink}(N, d, s)$ of the network 100A shown in FIG. 1A, having a variation of inverse Benes connection topology of five stages with N=32,

4

d=2 and s=2, strictly nonblocking network for unicast connections and rearrangeably nonblocking network for arbitrary fan-out multicast connections, in accordance with the invention.

FIG. 1C is a diagram 100C layout of the network $V_{fold-mlink}$ (N, d, s) shown in FIG. 1B, in one embodiment, illustrating the connection links belonging with in each block only.

FIG. 1D is a diagram 100D layout of the network $V_{fold-mlink}(N, d, s)$ shown in FIG. 1B, in one embodiment, illustrating the connection links ML(1,i) for i=[1, 64] and ML(8,i) for i=[1, 64].

FIG. 1E is a diagram **100**E layout of the network $V_{\it fold-mlink}$ (N, d, s) shown in FIG. 1B, in one embodiment, illustrating the connection links ML(**2**,i) for i=[1, 64] and ML(**7**,i) for i=[1, 64].

FIG. 1F is a diagram **100**F layout of the network $V_{fold-mlink}$ (N, d, s) shown in FIG. 1B, in one embodiment, illustrating the connection links ML(3,i) for i=[1, 64] and ML(6,i) for i=[1, 64].

FIG. 1G is a diagram 100G layout of the network $V_{fold-mlimk}(N, d, s)$ shown in FIG. 1B, in one embodiment, illustrating the connection links ML(4,i) for i=[1, 64] and ML(5,i) for i=[1, 64].

FIG. 1H is a diagram 100H layout of a network $V_{fold-mlink}$ (N, d, s) where N=128, d=2, and s=2, in one embodiment, illustrating the connection links belonging with in each block only.

FIG. 1I is a diagram 100I detailed connections of BLOCK 1_2 in the network layout 100C in one embodiment, illustrating the connection links going in and coming out when the layout 100C is implementing $V_{\textit{mlink}}(N, d, s)$ or $V_{\textit{fold-mlink}}(N, d, s)$.

FIG. 1J is a diagram 100J detailed connections of BLOCK 1_2 in the network layout 100C in one embodiment, illustrating the connection links going in and coming out when the layout 100C is implementing $V_{\textit{mlink-bfi}}(N,d,s)$.

FIG. 1K is a diagram 100K detailed connections of BLOCK 1_2 in the network layout 100C in one embodiment, illustrating the connection links going in and coming out when the layout 100C is implementing V(N, d, s) or V_{fold}(N, d, s).

FIG. 1K1 is a diagram 100M1 detailed connections of BLOCK 1_2 in the network layout 100C in one embodiment, illustrating the connection links going in and coming out when the layout 100C is implementing V(N, d, s) or V_{fold}(N, d, s) for s=1.

FIG. 1L is a diagram 100L detailed connections of BLOCK 1_2 in the network layout 100C in one embodiment, illustrating the connection links going in and coming out when the layout 100C is implementing $V_{\it bfl}(N, d, s)$.

FIG. 1L1 is a diagram 100L1 detailed connections of BLOCK 1_2 in the network layout 100C in one embodiment, illustrating the connection links going in and coming out 55 when the layout 100C is implementing V_{bft}(N, d, s) for s=1.

FIG. **2**A is a diagram **200**A of an exemplary symmetrical multi-link multi-stage network V_{fold-mlink}(N, d, s) having inverse Benes connection topology of nine stages with N=24, d=2 and s=2, strictly nonblocking network for unicast connections and rearrangeably nonblocking network for arbitrary fan-out multicast connections, in accordance with the invention.

FIG. 2B is a diagram 200B of the equivalent symmetrical folded multi-link multi-stage network $V_{\it fold-mlink}(N, d, s)$ of the network 200A shown in FIG. 2A, having inverse Benes connection topology of five stages with N=24, d=2 and s=2, strictly nonblocking network for unicast connections and

rearrangeably nonblocking network for arbitrary fan-out multicast connections, in accordance with the invention.

FIG. 2C is a diagram 200C layout of the network $V_{\it fold-mlink}$ (N, d, s) shown in FIG. 2B, in one embodiment, illustrating the connection links belonging with in each block only.

FIG. **2**D is a diagram **200**D layout of the network $V_{fold-mlink}(N, d, s)$ shown in FIG. **2**B, in one embodiment, illustrating the connection links ML(1,i) for i=[1, 48] and ML(8,i) for i=[1, 48].

FIG. **2**E is a diagram **200**E layout of the network $V_{fold-mlink}$ (N, d, s) shown in FIG. **2**B, in one embodiment, illustrating the connection links ML(**2**,i) for i=[1, 32] and ML(**7**,i) for i=[1,32].

FIG. 2F is a diagram **200**F layout of the network $V_{fold-mlink}$ (N, d, s) shown in FIG. 2B, in one embodiment, illustrating the connection links ML(3,i) for i=[1, 64] and ML(6,i) for i=[1, 64].

FIG. **2**G is a diagram **200**G layout of the network $V_{fold-mlink}(N, d, s)$ shown in FIG. **2**B, in one embodiment, illustrating the connection links ML(**4**,i) for i=[1, 64] and 20 ML(**5**,i) for i=[1, 64].

FIG. 3A is a diagram 300A layout of the topmost row of the network $V_{\mathit{fold-mlink}}(N,d,s)$ with N=512, d=2 and s=2, in one embodiment, illustrating the provisioning of 2's BW.

FIG. 3B is a diagram 300B layout of the topmost row of the 25 network $V_{fold-mlink}(N,d,s)$ with N=512, d=2 and s=2, in one embodiment, illustrating the provisioning of 4's BW.

FIG. 3C is a diagram 300C layout of the topmost row of the network $V_{fold-mlink}(N,d,s)$ with N=512, d=2 and s=2, in one embodiment, illustrating the provisioning of 8's BW with 30 nearest neighbor connectivity first.

FIG. 3D is a diagram 300D layout of the topmost row of the network $V_{\mathit{fold-mlink}}(N,d,s)$ with N=512, d=2 and s=2, in one embodiment, illustrating the provisioning of 8's BW with nearest neighbor connectivity recursively.

FIG. 4A is a diagram 400A layout of the topmost row of the network $V_{\mathit{fold-mlink}}(N,d,s)$ with N=512, d=2 and s=2, in one embodiment, illustrating the provisioning of 2's BW in first stage.

FIG. 4B is a diagram **400**B layout of the topmost row of the 40 network $V_{fold\text{-}mlink}(N,d,s)$ with N=512, d=2 and s=2, in one embodiment, illustrating the remaining nearest neighbor connectivity in the second stage by provisioning 4's BW, 8's BW etc.

FIG. 4C is a diagram **400**C layout of the topmost row of the 45 network $V_{fold-mlink}(N,d,s)$ with N=512, d=2 and s=2, in one embodiment, illustrating the third stage, by provisioning 4's and 8's BW.

FIG. **5** is a diagram **500** layout of the topmost row of the network $V_{fold-mlink}(N,d,s)$ with N=512, d=2 and s=2, in one 50 embodiment, illustrating the provisioning of 8's BW and 16's BW in Partial & Tapered Connectivity (Bandwidth) in a stage.

FIG. **6** is a diagram **600** layout of the topmost row of the network $V_{fold-mlink}(N,d,s)$ with N=2048, d=2 and s=2, in one 55 embodiment, illustrating the provisioning of 8's BW, 16's BW and 32's BW in Partial & Tapered Connectivity (Bandwidth) in a stage.

FIG. 7 is a diagram 700 layout of the topmost row of the network $V_{fold-mlink}(N,d,s)$ with N=2048, d=2 and s=2, in one 60 embodiment, illustrating the provisioning of 8's BW, 16's BW and 32's BW in Partial & Tapered Connectivity (Bandwidth) in a stage with equal length wires.

FIG. 8A is a diagram 800A of an exemplary symmetrical multi-link multi-stage pyramid network $V_{mlink-p}(N, d, s)$ having inverse Benes connection topology of nine stages with N=32, d=2 and s=2, strictly nonblocking network for unicast

6

connections and rearrangeably nonblocking network for arbitrary fan-out multicast connections, in accordance with the invention

FIG. **8**B is a diagram **800**B of the equivalent symmetrical folded multi-link multi-stage pyramid network $V_{fold-mlink-p}$ (N, d, s) of the network **800**A shown in FIG. **8**A, having inverse Benes connection topology of five stages with N=32, d=2 and s=2, strictly nonblocking network for unicast connections and rearrangeably nonblocking network for arbitrary fan-out multicast connections, in accordance with the invention.

FIG. **8**C is a diagram **800**C layout of the network $V_{fold-mlink-p}(N, d, s)$ shown in FIG. **8**B, in one embodiment, illustrating the connection links belonging with in each block only.

FIG. **8**D is a diagram **800**D layout of the network $V_{fold-mlimk-p}(N, d, s)$ shown in FIG. **8**B, in one embodiment, illustrating the connection links ML(1,i) for i=[1, 64] and ML(8,i) for i=[1, 64].

FIG. 8E is a diagram 800E layout of the network $V_{fold-mlink-p}$ (N, d, s) shown in FIG. 8B, in one embodiment, illustrating the connection links ML(2,i) for i=[1, 64] and ML(7,i) for i=[1, 64].

FIG. **8**F is a diagram **800**F layout of the network $V_{fold-mlink-p}(N, d, s)$ shown in FIG. **8**B, in one embodiment, illustrating the connection links ML(**3**,i) for i=[1, 64] and ML(**6**,i) for i=[1, 64].

FIG. **8**G is a diagram **800**G layout of the network $V_{fold-mlink-p}(N, d, s)$ shown in FIG. **8**B, in one embodiment, illustrating the connection links $ML(\mathbf{4},i)$ for i=[1, 64] and $ML(\mathbf{5},i)$ for i=[1, 64].

FIG. **8**H is a diagram **800**H layout of a network $V_{fold-mlink-p}(N, d, s)$ where N=128, d=2, and s=2, in one embodiment, illustrating the connection links belonging with 35 in each block only.

FIG. 8I is a diagram 800I detailed connections of BLOCK 1_2 in the network layout 800C in one embodiment, illustrating the connection links going in and coming out when the layout 800C is implementing $V_{\textit{mlink-p}}(N, d, s)$ or $V_{\textit{fold-mlink-p}}(N, d, s)$

FIG. 8J is a diagram 800J detailed connections of BLOCK 1_2 in the network layout 800C in one embodiment, illustrating the connection links going in and coming out when the layout 800C is implementing $V_{mlink-bfp}(N,d,s)$.

FIG. **8K** is a diagram **800K** detailed connections of BLOCK **1_2** in the network layout **800C** in one embodiment, illustrating the connection links going in and coming out when the layout **800C** is implementing V_p (N, d, s) or V_{fold-p} (N, d, s).

FIG. **8K1** is a diagram **800M1** detailed connections of BLOCK **1_2** in the network layout **800**C in one embodiment, illustrating the connection links going in and coming out when the layout **800**C is implementing $V_p(N, d, s)$ or $V_{fold-p}(N, d, s)$ for s=1.

FIG. 8L is a diagram 800L detailed connections of BLOCK 1_2 in the network layout 800C in one embodiment, illustrating the connection links going in and coming out when the layout 800C is implementing V_{6.0}(N, d, s).

layout **800**C is implementing $V_{bfp}(N, d, s)$. FIG. **8L1** is a diagram **800**L1 detailed connections of BLOCK **1_2** in the network layout **800**C in one embodiment, illustrating the connection links going in and coming out when the layout **800**C is implementing $V_{bfp}(N, d, s)$ for s=1.

FIG. 9A is high-level flowchart of a scheduling method 900 according to the invention, used to set up the multicast connections in the generalized multi-stage pyramid network and the generalized multi-link multi-stage pyramid network disclosed in this invention.

FIG. 10A is high-level flowchart of a scheduling method 1000 according to the invention, used to set up the multicast connections in the generalized butterfly fat pyramid network and the generalized multi-link butterfly fat pyramid network disclosed in this invention.

FIG. 11A1 is a diagram 1100A1 of an exemplary prior art implementation of a two by two switch; FIG. 11A2 is a diagram 1100A2 for programmable integrated circuit prior art implementation of the diagram 1100A1 of FIG. 11A1; FIG. 11A3 is a diagram 1100A3 for one-time programmable integrated circuit prior art implementation of the diagram 1100A1 of FIG. 11A1; FIG. 11A4 is a diagram 1100A4 for integrated circuit placement and route implementation of the diagram 1100A1 of FIG. 11A1.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is concerned with the VLSI layouts of arbitrarily large switching networks for broadcast, unicast and multicast connections. Particularly switching networks considered in the current invention include: generalized multi-stage networks $V(N_1, N_2, d, s)$, generalized folded multi-stage networks $V_{fold}(N_1, N_2, d, s)$, generalized butterfly fat tree networks $V_{bfl}(N_1, N_2, d, s)$, generalized multi-link 25 multi-stage networks $V_{mlink}(N_1, N_2, d, s)$, generalized folded multi-link multi-stage networks $V_{fold-mlink}(N_1, N_2, d, s)$, generalized multi-link butterfly fat tree networks $V_{mlink-bfl}(N_1, N_2, d, s)$, generalized multi-link butterfly fat tree networks $V_{mlink-bfl}(N_1, N_2, d, s)$, and generalized cube connected cycles networks $V_{ccc}(N_1, 30, N_2, d, s)$ for s=1, 2, 3 or any number in general.

Efficient VLSI layout of networks on a semiconductor chip are very important and greatly influence many important design parameters such as the area taken up by the network on the chip, total number of wires, length of the wires, latency of 35 the signals, capacitance and hence the maximum clock speed of operation. Some networks may not even be implemented practically on a chip due to the lack of efficient layouts. The different varieties of multi-stage networks described above have not been implemented previously on the semiconductor 40 chips efficiently. For example in Field Programmable Gate Array (FPGA) designs, multi-stage networks described in the current invention have not been successfully implemented primarily due to the lack of efficient VLSI layouts. Current commercial FPGA products such as Xilinx Vertex, Altera's 45 Stratix implement island-style architecture using mesh and segmented mesh routing interconnects using either full crossbars or sparse crossbars. These routing interconnects consume large silicon area for crosspoints, long wires, large signal propagation delay and hence consume lot of power.

The current invention discloses the VLSI layouts of numerous types of multi-stage and pyramid networks which are very efficient and exploit spacial locality in the connectivity. Moreover they can be embedded on to mesh and segmented mesh routing interconnects of current commercial FPGA 55 products. The VLSI layouts disclosed in the current invention are applicable to including the numerous generalized multistage networks disclosed in the following patent applications:

- 1) Strictly and rearrangeably nonblocking for arbitrary fan-out multicast and unicast for generalized multi-stage networks $V(N_1, N_2, d, s)$ with numerous connection topologies and the scheduling methods are described in detail in the U.S. application Ser. No. 12/530,207 that is incorporated by reference above.
- 2) Strictly and rearrangeably nonblocking for arbitrary 65 fan-out multicast and unicast for generalized butterfly fat tree networks $V_{hg}(N_1, N_2, d, s)$ with numerous connection topolo-

8

gies and the scheduling methods are described in detail in the U.S. application Ser. No. 12/601,273 that is incorporated by reference above.

- Rearrangeably nonblocking for arbitrary fan-out multiscast and unicast, and strictly nonblocking for unicast for generalized multi-link multi-stage networks V_{mlink}(N₁, N₂, d, s) and generalized folded multi-link multi-stage networks V_{fold-mlink}(N₁, N₂, d, s) with numerous connection topologies and the scheduling methods are described in detail in the U.S. application Ser. No. 12/601,274 that is incorporated by reference above.
- Strictly and rearrangeably nonblocking for arbitrary fan-out multicast and unicast for generalized multi-link butterfly fat tree networks V_{mlink-bft}(N₁, N₂, d, s) with numerous connection topologies and the scheduling methods are described in detail in the U.S. application Ser. No. 12/601,273 that is incorporated by reference above.
 - 5) Strictly and rearrangeably nonblocking for arbitrary fan-out multicast and unicast for generalized folded multistage networks $V_{fold}(N_1, N_2, d, s)$ with numerous connection topologies and the scheduling methods are described in detail in the U.S. application Ser. No. 12/601,274 that is incorporated by reference above.
 - 6) Strictly nonblocking for arbitrary fan-out multicast and unicast for generalized multi-link multi-stage networks V_{mlink} (N_1 , N_2 , d, s) and generalized folded multi-link multi-stage networks $V_{fold-mlink}$ (N_1 , N_2 , d, s) with numerous connection topologies and the scheduling methods are described in detail in the U.S. application Ser. No. 12/601,274 that is incorporated by reference above.

7) VLSI layouts of numerous types of multi-stage networks are described in the U.S. application Ser. No. 12/601,275 entitled "VLSI LAYOUTS OF FULLY CONNECTED NETWORKS" that is incorporated by reference above.

In addition the layouts of the current invention are also applicable to generalized multi-stage pyramid networks $V_p(N_1,\ N_2,\ d,\ s)$, generalized folded multi-stage pyramid networks $V_{fold-p}(N_1,\ N_2,\ d,\ s)$, generalized butterfly fat pyramid networks $V_{bfp}(N_1,\ N_2,\ d,\ s)$, generalized multi-link multi-stage pyramid networks $V_{mlink-p}(N_1,\ N_2,\ d,\ s)$, generalized folded multi-link multi-stage pyramid networks $V_{fold-mlink-p}(N_1,\ N_2,\ d,\ s)$, generalized multi-link butterfly fat pyramid networks $V_{mlink-bfp}(N_1,\ N_2,\ d,\ s)$, generalized hypercube networks $V_{hcube}(N_1,\ N_2,\ d,\ s)$, and generalized cube connected cycles networks $V_{CCC}(N_1,\ N_2,\ d,\ s)$ for s=1, 2, 3 or any number in general.

Symmetric RNB Generalized Multi-Link Multi-Stage Network $V_{\textit{mlink}}(N_1, N_2, d, s)$, Connection Topology: Nearest Neighbor Connectivity and with Full Bandwidth:

Referring to diagram 100A in FIG. 1A, in one embodiment, an exemplary generalized multi-link multi-stage network $V_{mlink}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=2 with nine stages of one hundred and forty four switches for satisfying communication requests, such as setting up a telephone call or a data call, or a connection between configurable logic blocks, between an input stage 110 and output stage 120 via middle stages 130, 140, 150, 160, 170, 180 and 190 is shown where input stage 110 consists of sixteen, two by four switches IS1-IS16 and output stage 120 consists of sixteen, four by two switches OS1-OS16. And all the middle stages namely the middle stage 130 consists of sixteen, four by four switches MS(1,1)-MS(1,16), middle stage 140 consists of sixteen, four by four switches MS(2,1)-MS(2,16), middle stage 150 consists of sixteen, four by four switches MS(3,1)-MS(3,16), middle stage 160 consists of sixteen, four by four switches MS(4,1)-MS(4,16), middle stage 170 consists of sixteen, four by four switches MS(5,1)-MS(5,16),

middle stage 180 consists of sixteen, four by four switches MS(6,1)-MS(6,16), and middle stage 190 consists of sixteen, four by four switches MS(7,1)-MS(7,16).

As disclosed in U.S. Provisional Patent Application Ser. No. 60/940,389 that is incorporated by reference above, such a network can be operated in rearrangeably non-blocking manner for arbitrary fan-out multicast connections and also can be operated in strictly non-blocking manner for unicast connections.

In one embodiment of this network each of the input 10 switches IS1-IS16 and output switches OS1-OS16 are crossbar switches. The number of switches of input stage 110 and of output stage 120 can be denoted in general with the variable N/d, where N is the total number of inlet links or outlet links. The number of middle switches in each middle stage is denoted by N/d. The size of each input switch IS1-IS16 can be denoted in general with the notation d*2d and each output switch OS1-OS16 can be denoted in general with the notation 2d*d. Likewise, the size of each switch in any of the middle stages can be denoted as 2d*2d. A switch as used herein can 20 be either a crossbar switch, or a network of switches each of which in turn may be a crossbar switch or a network of switches. A symmetric multi-stage network can be represented with the notation $V_{mlink}(N, d, s)$, where N represents the total number of inlet links of all input switches (for 25 example the links IL1-IL32), d represents the inlet links of each input switch or outlet links of each output switch, and s is the ratio of number of outgoing links from each input switch to the inlet links of each input switch.

Each of the N/d input switches IS1-IS16 are connected to 30 exactly d switches in middle stage 130 through two links each for a total of 2xd links (for example input switch IS1 is connected to middle switch MS(1,1) through the middle links ML(1,1), ML(1,2), and also connected to middle switch MS(1,2) through the middle links ML(1,3) and ML(1,4)). 35 The middle links which connect switches in the same row in two successive middle stages are called hereinafter straight middle links; and the middle links which connect switches in different rows in two successive middle stages are called hereinafter cross middle links. For example, the middle links 40 ML(1,1) and ML(1,2) connect input switch IS1 and middle switch MS(1,1), so middle links ML(1,1) and ML(1,2) are straight middle links; where as the middle links ML(1,3) and ML(1,4) connect input switch IS1 and middle switch MS(1, 2), since input switch IS1 and middle switch MS(1,2) belong 45 to two different rows in diagram 100A of FIG. 1A, middle links ML(1.3) and ML(1.4) are cross middle links.

Each of the N/d middle switches MS(1,1)-MS(1,16) in the middle stage 130 are connected from exactly d input switches through two links each for a total of 2×d links (for example the 50 middle links ML(1,1) and ML(1,2) are connected to the middle switch MS(1,1) from input switch IS1, and the middle links ML(1,7) and ML(1,8) are connected to the middle switch MS(1,1) from input switch IS2) and also are connected to exactly d switches in middle stage 140 through two links 55 each for a total of 2×d links (for example the middle links ML(2,1) and ML(2,2) are connected from middle switch MS(1,1) to middle switch MS(2,1), and the middle links ML(2,3) and ML(2,4) are connected from middle switch MS(1,1) to middle switch MS(2,3)).

Each of the N/d middle switches MS(2,1)-MS(2,16) in the middle stage 140 are connected from exactly d middle switches in middle stage 130 through two links each for a total of $2\times d$ links (for example the middle links ML(2,1) and ML(2,2) are connected to the middle switch MS(2,1) from 65 input switch MS(1,1), and the middle links ML(1,11) and ML(1,12) are connected to the middle switch MS(2,1) from

10

input switch MS(1,3)) and also are connected to exactly d switches in middle stage 150 through two links each for a total of 2×d links (for example the middle links ML(3,1) and ML(3,2) are connected from middle switch MS(2,1) to middle switch MS(3,1), and the middle links ML(3,3) and ML(3,4) are connected from middle switch MS(2,1) to middle switch MS(3,6)).

Applicant notes that the topology of connections between middle switches MS(2,1)-MS(2,16) in the middle stage 140 and middle switches MS(3,1)-MS(3,16) in the middle stage 150 is not the typical inverse Benes topology but the connectivity of the generalized multi-link multi-stage network V_{mlink} (N_1, N_2, d, s) **100**A shown in FIG. **1**A is effectively the same, or alternatively the network 100A shown in FIG. 1A is topologically equivalent to the network with inverse Benes network topology. However as will be described later in layouts of FIG. 1C-FIG. 1G, the length of the connection from a given inlet link to its destination outlet links may consist of different route resulting in different latency and different power dissipation for a given multicast or unicast assignment. As will be described later in the layouts of FIG. 1C-FIG. 1G, the connection topology of middle links between middle stages 140 and 150 is in such a way that nearest neighbor blocks are connected directly and then the rest of the blocks are connected in inverse Benes topology.

Each of the N/d middle switches MS(3,1)-MS(3,16) in the middle stage 150 are connected from exactly d middle switches in middle stage 140 through two links each for a total of 2×d links (for example the middle links ML(3,1) and ML(3,2) are connected to the middle switch MS(3,1) from input switch MS(2,1), and the middle links ML(2,23) and ML(2,24) are connected to the middle switch MS(3,1) from input switch MS(2,6)) and also are connected to exactly d switches in middle stage 160 through two links each for a total of 2×d links (for example the middle links ML(4,1) and ML(4,2) are connected from middle switch MS(3,1) to middle switch MS(4,1), and the middle links ML(4,3) and ML(4,4) are connected from middle switch MS(3,1) to middle switch MS(4,11)).

Applicant notes that the topology of connections between middle switches MS(3,1)-MS(3,16) in the middle stage 150 and middle switches MS(4,1)-MS(4,16) in the middle stage 160 is not the typical inverse Benes topology but the connectivity of the generalized multi-link multi-stage network $V_{\it mlink}$ (N_1, N_2, d, s) 100A shown in FIG. 1A is effectively the same, or alternatively the network 100A shown in FIG. 1A is topologically equivalent to the network with inverse Benes network topology. However as will be described later in layouts of FIG. 1C-FIG. 1G, the length of the connection from a given inlet link to its destination outlet links may consist of different route resulting in different latency and different power dissipation for a given multicast or unicast assignment. As will be described later in the layouts of FIG. 1C-FIG. 1G, the connection topology of middle links between middle stages 150 and 160 is in such a way that nearest neighbor blocks are connected directly and then the rest of the blocks are connected in inverse Benes topology.

Each of the N/d middle switches MS(4,1)-MS(4,16) in the middle stage 160 are connected from exactly d middle switches in middle stage 150 through two links each for a total of 2×d links (for example the middle links ML(4,1) and ML(4,2) are connected to the middle switch MS(4,1) from input switch MS(3,1), and the middle links ML(4,43) and ML(4,44) are connected to the middle switch MS(4,1) from input switch MS(3,11)) and also are connected to exactly d switches in middle stage 170 through two links each for a total of 2×d links (for example the middle links ML(5,1) and

ML(5,2) are connected from middle switch MS(4,1) to middle switch MS(5,1), and the middle links ML(5,3) and ML(5,4) are connected from middle switch MS(4,1) to middle switch MS(5,11)).

Applicant notes that the topology of connections between middle switches MS(4.1)-MS(4.16) in the middle stage 160 and middle switches MS(5.1)-MS(5.16) in the middle stage 170 is not the typical inverse Benes topology but the connectivity of the generalized multi-link multi-stage network $V_{\it mlink}$ (N₁, N₂, d, s) 100A shown in FIG. 1A is effectively the same or alternatively the network 100A shown in FIG. 1A is topologically equivalent to the network with inverse Benes network topology. However as will be described later in layouts of FIG. 1C-FIG. 1G, the length of the connection from a given inlet link to its destination outlet links may consist of different route resulting in different latency and different power dissipation for a given multicast or unicast assignment. As will be described later in the layouts of FIG. 1C-FIG. 1G, the connection topology of middle links between middle stages 160 20 and 170 is in such a way that nearest neighbor blocks are connected directly and then the rest of the blocks are connected in inverse Benes topology.

Each of the N/d middle switches MS(5,1)-MS(5,16) in the middle stage 170 are connected from exactly d middle 25 switches in middle stage 160 through two links each for a total of 2×d links (for example the middle links ML(5,1) and ML(5,2) are connected to the middle switch MS(5,1) from input switch MS(4,1), and the middle links ML(5,43) and ML(5,44) are connected to the middle switch MS(5,1) from input switch MS(4,11)) and also are connected to exactly d switches in middle stage 180 through two links each for a total of 2×d links (for example the middle links ML(6,1) and ML(6,2) are connected from middle switch MS(5,1) to middle switch MS(6,1), and the middle links ML(6,3) and ML(6,4) are connected from middle switch MS(5,1) to middle switch MS(6,6)).

Applicant notes that the topology of connections between middle switches MS(5.1)-MS(5.16) in the middle stage 170 40 and middle switches MS(6.1)-MS(6.16) in the middle stage 180 is not the typical inverse Benes topology but the connectivity of the generalized multi-link multi-stage network \mathbf{V}_{mlink} (N₁, N₂, d, s) 100A shown in FIG. 1A is effectively the same or alternatively the network 100A shown in FIG. 1A is topo- 45 logically equivalent to the network with inverse Benes network topology. However as will be described later in layouts of FIG. 1C-FIG. 1G, the length of the connection from a given inlet link to its destination outlet links may consist of different route resulting in different latency and different power dissi- 50 pation for a given multicast or unicast assignment. As will be described later in the layouts of FIG. 1C-FIG. 1G, the connection topology of middle links between middle stages 170 and 180 is in such a way that nearest neighbor blocks are connected directly and then the rest of the blocks are con- 55 nected in inverse Benes topology.

Each of the N/d middle switches MS(6,1)-MS(6,16) in the middle stage 180 are connected from exactly d middle switches in middle stage 170 through two links each for a total of $2\times d$ links (for example the middle links ML(6,1) and 60 ML(6,2) are connected to the middle switch MS(6,1) from input switch MS(5,1), and the middle links ML(6,23) and ML(6,24) are connected to the middle switch MS(6,1) from input switch MS(5,6)) and also are connected to exactly d switches in middle stage 190 through two links each for a total 65 of $2\times d$ links (for example the middle links ML(7,1) and ML(7,2) are connected from middle switch MS(6,1) to

12

middle switch MS(7,1), and the middle links ML(7,3) and ML(7,4) are connected from middle switch MS(6,1) to middle switch MS(7,3)).

Each of the N/d middle switches MS(7,1)-MS(7,16) in the middle stage 190 are connected from exactly d middle switches in middle stage 180 through two links each for a total of 2×d links (for example the middle links ML(7,1) and ML(7,2) are connected to the middle switch MS(7,1) from input switch MS(6,1), and the middle links ML(7,11) and ML(7,12) are connected to the middle switch MS(7,1) from input switch MS(6,3)) and also are connected to exactly d switches in middle stage 120 through two links each for a total of 2×d links (for example the middle links ML(8,1) and ML(8,2) are connected from middle switch MS(7,1) to middle switch MS(8,1), and the middle links ML(8,3) and ML(8,4) are connected from middle switch MS(7,1) to middle switch OS2).

Each of the N/d middle switches OS1-OS16 in the middle stage 120 are connected from exactly d middle switches in middle stage 190 through two links each for a total of 2×d links (for example the middle links ML(8,1) and ML(8,2) are connected to the output switch OS1 from input switch MS(7, 1), and the middle links ML(8,7) and ML(8,8) are connected to the output switch OS1 from input switch MS(7,2)).

Finally the connection topology of the network 100A shown in FIG. 1A is logically similar to back to back inverse Benes connection topology with nearest neighbor connections between all the middle stages starting from middle stage 140 and middle stage 180.

Referring to diagram 100B in FIG. 1B, is a folded version of the multi-link multi-stage network 100A shown in FIG. 1A. The network 100B in FIG. 1B shows input stage 110 and output stage 120 are placed together. That is input switch IS1 and output switch OS1 are placed together, input switch IS2 and output switch OS2 are placed together, and similarly input switch IS16 and output switch OS16 are placed together. All the right going links {i.e., inlet links IL1-IL32 and middle links ML(1,1)-ML(1, 64)} correspond to input switches IS1-IS16, and all the left going links {i.e., middle links ML(8,1)-ML(8,64) and outlet links OL1-OL32} correspond to output switches OS1-OS16.

Middle stage 130 and middle stage 190 are placed together. That is middle switches MS(1,1) and MS(7,1) are placed together, middle switches MS(1,2) and MS(7,2) are placed together, and similarly middle switches MS(1,16) and MS(7, 16) are placed together. All the right going middle links {i.e., middle links ML(1,1)-ML(1, 64) and middle links ML(2,1)-ML(2,64)} correspond to middle switches MS(1,1)-MS(1, 16), and all the left going middle links {i.e., middle links ML(7,1)-ML(7,64) and middle links ML(8,1) and ML(8,64)} correspond to middle switches MS(7,1)-MS(7,16).

Middle stage **140** and middle stage **180** are placed together. That is middle switches MS(**2**,**1**) and MS(**6**,**1**) are placed together, middle switches MS(**2**,**2**) and MS(**6**,**2**) are placed together, and similarly middle switches MS(**2**,**16**) and MS(**6**, **16**) are placed together. All the right going middle links {i.e., middle links ML(**2**,**1**)-ML(**2**,**64**) and middle links ML(**3**,**1**)-ML(**3**,**64**)} correspond to middle switches MS(**2**,**1**)-MS(**2**,**16**), and all the left going middle links {i.e., middle links ML(**6**,**1**)-ML(**6**,**64**) and middle links ML(**7**,**1**) and ML(**7**,**64**)} correspond to middle switches MS(**6**,**1**)-MS(**6**,**16**).

Middle stage **150** and middle stage **170** are placed together. That is middle switches MS(**3**,**1**) and MS(**5**,**1**) are placed together, middle switches MS(**3**,**2**) and MS(**5**,**2**) are placed together, and similarly middle switches MS(**3**,**16**) and MS(**5**,**16**) are placed together. All the right going middle links {i.e., middle links ML(**3**,**1**)-ML(**3**,**64**) and middle links ML(**4**,**1**)-

ML(4,64)} correspond to middle switches MS(3,1)-MS(3, 16), and all the left going middle links {i.e., middle links ML(5,1)-ML(5,64) and middle links ML(6,1) and ML(6,64)} correspond to middle switches MS(5,1)-MS(5,16).

Middle stage **160** is placed alone. All the right going ⁵ middle links are the middle links ML(**4**,**1**)-ML(**4**,**64**) and all the left going middle links are middle links ML(**5**,**1**)-ML(**5**,**64**).

Just the same way as the connection topology of the network 100A shown in FIG. 1A, the connection topology of the network 100B shown in FIG. 1B is the folded version and logically similar to back to back inverse Benes connection topology with nearest neighbor connections between all the middle stages starting from middle stage 140 and middle stage 180.

In one embodiment, in the network 100B of FIG. 1B, the switches that are placed together are implemented as separate switches then the network 100B is the generalized folded multi-link multi-stage network $V_{fold-mlink}(N_1, N_2, d, s)$ where 20 $N_1=N_2=32$; d=2; and s=2 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,389 that is incorporated by reference above. That is the switches that are placed together in input stage 110 and output stage 120 are implemented as a two by four switch and a four by two switch 25 respectively. For example the input switch IS1 and output switch OS1 are placed together; so input switch IS1 is implemented as two by four switch with the inlet links IL1 and IL2 being the inputs of the input switch IS1 and middle links ML(1,1)-ML(1,4) being the outputs of the input switch IS1; 30 and output switch OS1 is implemented as four by two switch with the middle links ML(8,1), ML(8,2), ML(8,7) and ML(8,7)8) being the inputs of the output switch OS1 and outlet links OL1-OL2 being the outputs of the output switch OS1. Similarly in this embodiment of network 100B all the switches that 35 are placed together in each middle stage are implemented as separate switches.

Modified-Hypercube Topology Layout Scheme:

Referring to layout 100C of FIG. 1C, in one embodiment, there are sixteen blocks namely Block 1_2, Block 3_4, Block 40 5_6, Block 7_8, Block 9_10, Block 11_12, Block 13_14, Block 15_16, Block 17_18, Block 19_20, Block 21_22, Block 23_24, Block 25_26, Block 27_28, Block 29_30, and Block 31_32. Each block implements all the switches in one row of the network 100B of FIG. 1B, one of the key aspects of the current invention. For example Block 1_2 implements the input switch IS1, output Switch OS1, middle switch MS(1.1), middle switch MS(7,1), middle switch MS(2,1), middle switch MS(6,1), middle switch MS(3,1), middle switch MS(5,1), and middle switch MS(4,1). For the simplification 50 of illustration, Input switch IS1 and output switch OS1 together are denoted as switch 1; Middle switch MS(1,1) and middle switch MS(7,1) together are denoted by switch 2; Middle switch MS(2,1) and middle switch MS(6,1) together are denoted by switch 3; Middle switch MS(3,1) and middle 55 switch MS(5,1) together are denoted by switch 4; Middle switch MS(4,1) is denoted by switch 5.

All the straight middle links are illustrated in layout 100C of FIG. 1C. For example in Block 1_2, inlet links IL1-IL2, outlet links OL1-OL2, middle link ML(1,1), middle link 60 ML(1,2), middle link ML(8,1), middle link ML(8,2), middle link ML(2,1), middle link ML(2,2), middle link ML(7,1), middle link ML(7,2), middle link ML(3,1), middle link ML(3,2), middle link ML(6,1), middle link ML(6,2), middle link ML(4,1), middle link ML(4,2), middle link ML(5,1) and 65 middle link ML(5,2) are illustrated in layout 100C of FIG. 1C.

14

Even though it is not illustrated in layout 100C of FIG. 1C, in each block, in addition to the switches there may be Configurable Logic Blocks (CLB) or any arbitrary digital circuit depending on the applications in different embodiments. There are four quadrants in the layout 100C of FIG. 1C namely top-left, bottom-left, top-right and bottom-right quadrants. Top-left quadrant implements Block 1 2, Block 3_4, Block 5_6, and Block 7_8. Bottom-left quadrant implements Block 9_10, Block 11_12, Block 13_14, and Block 15_16. Top-right quadrant implements Block 17_18, Block 19_20, Block 21_22, and Block 23_24. Bottom-right quadrant implements Block 25_26, Block 2728, Block 29_30, and Block 31_32. There are two halves in layout 100C of FIG. 1C namely left-half and right-half. Left-half consists of top-left and bottom-left quadrants. Right-half consists of top-right and bottom-right quadrants.

Recursively in each quadrant there are four sub-quadrants. For example in top-left quadrant there are four sub-quadrants namely top-left sub-quadrant, bottom-left sub-quadrant, topright sub-quadrant and bottom-right sub-quadrant. Top-left sub-quadrant of top-left quadrant implements Block 1_2. Bottom-left sub-quadrant of top-left quadrant implements Block 3_4. Top-right sub-quadrant of top-left quadrant implements Block 5 6. Finally bottom-right sub-quadrant of top-left quadrant implements Block 7_8. Similarly there are two sub-halves in each quadrant. For example in top-left quadrant there are two sub-halves namely left-sub-half and right-sub-half. Left-sub-half of top-left quadrant implements Block 1_2 and Block 3_4. Right-sub-half of top-left quadrant implements Block 5 6 and Block 7 8. Finally applicant notes that in each quadrant or half the blocks are arranged as a general binary hypercube. Recursively in larger multi-stage network $V_{fold-mlink}(N_1, N_2, d, s)$ where $N_1=N_2>32$, the layout in this embodiment in accordance with the current invention, will be such that the super-quadrants will also be arranged in d-ary hypercube manner. (In the embodiment of the layout 100C of FIG. 1C, it is binary hypercube manner since d=2, in the network $V_{\textit{fold-mlink}}(N_1,\,N_2,\,d,\,s)$ 100B of FIG. 1B).

Layout 100D of FIG. 1D illustrates the inter-block links between switches 1 and 2 of each block. For example middle links ML(1,3), ML(1,4), ML(8,7), and ML(8,8) are connected between switch 1 of Block 1_2 and switch 2 of Block 3_4 . Similarly middle links ML(1,7), ML(1,8), ML(8,3), and ML(8,4) are connected between switch 2 of Block 12 and switch 1 of Block 3_4. Applicant notes that the inter-block links illustrated in layout 100D of FIG. 1D can be implemented as vertical tracks in one embodiment. Also in one embodiment inter-block links are implemented as two different tracks (for example middle links ML(1,4) and ML(8,8) are implemented as two different tracks); or in an alternative embodiment inter-block links are implemented as a time division multiplexed single track (for example middle links ML(1,4) and ML(8,8) are implemented as a time division multiplexed single track).

The bandwidth provided between two physically adjacent blocks in the same column or same row, when a switch in the first block is connected to a switch in the second block through the corresponding inter-block links and also a second switch in the second block is connected to a second switch in the first block through the corresponding inter-block links, is hereinafter called 2's bandwidth or 2's BW. The bandwidth offered between two diagonal blocks is also 2's BW when the corresponding row and columns provide 2's BW. For example the bandwidth provided between Block 1_2 and Block 3_4 of layout 100D of FIG. 1D is 2's BW because inter-block links between switch 1 of Block 1_2 and switch 2

of Block 3_4 are connected and also inter-block links between switch 2 of Block 1_2 and switch 1 of Block 3_4 are connected.

In general the bandwidth offered within a quadrant of the layout formed by two nearest neighboring blocks on each of the four sides is 2's BW. For example in layout 100C of FIG. 1C the bandwidth offered in top-left quadrant is 2's BW. Similarly the bandwidth offered within each of the other three quadrants bottom-left, top-right and bottom-right quadrants is 2' BW. Alternatively the bandwidth offered with in a square of blocks with the sides of the square consisting of two neighboring blocks is 2's BW. This definition can be generalized so that the bandwidth offered within a square of blocks with the sides consisting of "x" number of blocks, when $x=2^y$ where y is an integer, is hereinafter x's BW. Hence the bandwidth offered between four neighboring quadrants is 4's BW. For example the bandwidth offered between top-left quadrant, bottom-left quadrant, top-right quadrant and bottom-right quadrant is 4's BW as will be described later. It must be noted 20 that the 4's BW is the bandwidth offered between the four quadrants in a square of four quadrants and it is not the bandwidth offered with in each quadrant.

Layout 100E of FIG. 1E illustrates the inter-block links between switches 2 and 3 of each block. For example middle 25 links ML(2,3), ML(2,4), ML(7,11), and ML(7,12) are connected between switch 2 of Block 1_2 and switch 3 of Block **5_6**. Similarly middle links ML(**2**,**11**), ML(**2**,**12**), ML(**7**,**3**), and ML(7,4) are connected between switch 3 of Block 1 2 and switch 2 of Block 5_6. Applicant notes that the inter- 30 block links illustrated in layout 100E of FIG. 1E can be implemented as horizontal tracks in one embodiment. Also in one embodiment inter-block links are implemented as two different tracks (for example middle links ML(2,12) and ML(7,4) are implemented as two different tracks); or in an 35 alternative embodiment inter-block links are implemented as a time division multiplexed single track (for example middle links ML(2,12) and ML(7,4) are implemented as a time division multiplexed single track).

The bandwidth provided between Block 1_2 and Block 40 5_6 of layout 100E of FIG. 1E is 2's BW because inter-block links between switch 2 of Block 1_2 and switch 3 of Block 5_6 are connected and also inter-block links between switch 3 of Block 1_2 and switch 2 of Block 5_6 are connected. Similarly the bandwidth provided between Block 1_2 and 45 Block 7_8 is also 2's BW since corresponding rows (formed by Block 1_2 and Block 5_6; and by Block 3_4 and Block 7_8) and columns (formed by Block 1_2 and Block 3_4; and by Block 5_6 and Block 7_8) offer 2's BW. Similarly the bandwidth offered between Block 3_4 and Block 5_6 is 2's 50 BW

Layout 100F of FIG. 1F illustrates the inter-block links between switches 3 and 4 of each block. For example middle links ML(3,3), ML(3,4), ML(6,23), and ML(6,24) are connected between switch 3 of Block 1_2 and switch 4 of Block 55 11_12. Similarly middle links ML(3,23), ML(3,24), ML(6, 3), and ML(6,4) are connected between switch 4 of Block 1_2 and switch 3 of Block 11_12. Applicant notes that the interblock links illustrated in layout 100F of FIG. 1F can be implemented as vertical tracks in one embodiment. Also in 60 one embodiment inter-block links are implemented as two different tracks (for example middle links ML(3,4) and ML(6,24) are implemented as two different tracks); or in an alternative embodiment inter-block links are implemented as a time division multiplexed single track (for example middle 65 links ML(3,4) and ML(6,24) are implemented as a time division multiplexed single track).

16

Applicant notes that the topology of inter-block links between switches 3 and 4 of each block of layout 100F of FIG. 1F is not the typical inverse Benes Network topology. In layout 100F first the switches 3 and 4 of nearest neighbor blocks are connected and then the rest of the blocks are connected in inverse Benes Network topology. For example since Block 3_4 and Block 9_10 are nearest neighbors in the leftmost column of layout 100F the corresponding links from switches 3 and 4 are connected together first. Then the remaining blocks in each column are connected in inverse Benes topology. For example in layout 100F since the remaining block in the leftmost column of top-left quadrant is Block 1_2 and the remaining block in the leftmost column of bottom-left quadrant is Block 11_12 the inter-block links between their corresponding switches 3 and 4 are connected together. Similarly in all the columns, the inter-block links between switches 3 and 4 are connected.

The bandwidth offered in layout 100F of FIG. 1F is 4's BW, since the bandwidth offered with in a square of blocks with the sides of the square consisting of four neighboring blocks is 4's BW. It must be noted that the bandwidth offered between top-left quadrant and bottom-left quadrant is 4's BW. That is inter-block links of a switch in each one of the blocks in top-left quadrant are connected to a switch in any one of the blocks in bottom-left quadrant and vice versa. Similarly the bandwidth offered between top-right quadrant and bottom-right quadrant is 4's BW. For example the bandwidth provided between Block 1 2 and Block 11 12 of layout 100F of FIG. 1F is 4's BW because inter-block links between switch 3 of Block 1_2 and switch 4 of Block 1112 are connected and also inter-block links between switch 4 of Block 1_2 and switch 3 of Block 11_12 are connected. Similarly the bandwidth provided between Block 3_4 and Block 9 10 of layout 100F of FIG. 1F is 4's BW, even though they are physically nearest neighbors. It must be noted that the 4's BW is the bandwidth offered between the four quadrants in a square of four quadrants and it is not the bandwidth offered with in each quadrant.

Layout 100G of FIG. 1G illustrates the inter-block links between switches 4 and 5 of each block. For example middle links ML(4,3), ML(4,4), ML(5,43), and ML(5,44) are connected between switch 4 of Block 1_2 and switch 5 of Block 21_22. Similarly middle links ML(4,43), ML(4,44), ML(5, 3), and ML(5,4) are connected between switch 5 of Block 1_2 and switch 4 of Block 21_22. Applicant notes that the interblock links illustrated in layout 100G of FIG. 1G can be implemented as horizontal tracks in one embodiment. Also in one embodiment inter-block links are implemented as two different tracks (for example middle links ML(4,4) and ML(5,44) are implemented as two different tracks); or in an alternative embodiment inter-block links are implemented as a time division multiplexed single track (for example middle links ML(4,4) and ML(5,44) are implemented as a time division multiplexed single track).

Applicant notes that the topology of inter-block links between switches 4 and 5 of each block of layout 100G of FIG. 1G is not the typical inverse Benes Network topology. In layout 100G first the switches 4 and 5 of nearest neighbor blocks are connected and then the rest of the blocks are connected in inverse Benes Network topology. For example since Block 5_6 and Block 17_18 are nearest neighbors in the topmost row of layout 100G the corresponding links from switches 4 and 5 are connected together first. Then the remaining blocks in each row are connected in inverse Benes topology. For example in layout 100G since the remaining block in the topmost row of top-left quadrant is Block 1_2 and the remaining block in the topmost row of top-right quadrant

is Block 21_22 the inter-block links between their corresponding switches 4 and 5 are connected together. Similarly in all the rows, the inter-block links between switches 4 and 5 are connected.

17

The bandwidth offered in layout 100G of FIG. 1G is 4's 5 BW, since the bandwidth offered with in a square of blocks with the sides of the square consisting of four neighboring blocks is 4's BW. It must be noted that the bandwidth offered between top-left quadrant and top-right quadrant is 4's BW. That is inter-block links of a switch in each one of the blocks in top-left quadrant are connected to a switch in any one of the blocks in top-right quadrant and vice versa. Similarly the bandwidth offered between bottom-left quadrant and bottomright quadrant is 4's BW. For example the bandwidth provided between Block 1 2 and Block 21 22 of layout 100G of 15 FIG. 1G is 4's BW because inter-block links between switch 4 of Block 1_2 and switch 5 of Block 21_22 are connected and also inter-block links between switch 5 of Block 1_2 and switch 4 of Block 21_22 are connected. Similarly the bandwidth provided between Block 5 6 and Block 17 18 of lay- 20 out 100G of FIG. 1G is 4's BW, even though they are physically nearest neighbors. Just the same way 2's BW is provided between two diagonal blocks, the bandwidth offered between two diagonal quadrants is also 4's BW that is when the corresponding row and columns provide 4's BW.

The complete layout for the network 100B of FIG. 1B is given by combining the links in layout diagrams of 100C, 100D, 100E, 100F, and 100G. Applicant notes that in the layout 100C of FIG. 1C, the inter-block links between switch 1 and switch 2 of corresponding blocks are vertical tracks as shown in layout 100D of FIG. 1D; the inter-block links between switch 2 and switch 3 of corresponding blocks are horizontal tracks as shown in layout 100E of FIG. 1E; the inter-block links between switch 3 and switch 4 of corresponding blocks are vertical tracks as shown in layout 100F of 5 FIG. 1F; and finally the inter-block links between switch 4 and switch 5 of corresponding blocks are horizontal tracks as shown in layout 100G of FIG. 1G. The pattern is alternate vertical tracks and horizontal tracks. It continues recursively for larger networks of N>32 as will be illustrated later.

Some of the key aspects of the current invention are discussed. 1) All the switches in one row of the multi-stage network 100B are implemented in a single block. 2) The blocks are placed in such a way that all the inter-block links are either horizontal tracks or vertical tracks; 3) Since all the 45 inter-block links are either horizontal or vertical tracks, all the inter-block links can be mapped on to island-style architectures in current commercial FPGA's; 4) The length of the wires in a given stage are not equal, for example the inter-block links between switches 3 and 4 of the nearest neighbor 50 blocks Block 3_4 and Block 9_10 are smaller in length than the inter-block links between switches 3 and 4 of the blocks Block 1_2 and Block 11_12.

In accordance with the current invention, the layout 100C in FIG. 1C can be recursively extended for any arbitrarily 55 large generalized folded multi-link multi-stage network $V_{fold\text{-}mlink}(N_1, N_2, d, s)$ the sub-quadrants, quadrants, and super-quadrants are arranged in d-ary hypercube manner and also the inter-blocks are accordingly connected in d-ary hypercube topology. Even though all the embodiments in the 60 current invention are illustrated for $N_1 = N_2$, the embodiments can be extended for $N_1 \neq N_2$.

Referring to layout **100**H of FIG. **1**H, illustrates the extension of layout **100**C for the network $V_{fold\text{-}mlink}(N_1, N_2, d, s)$ where $N_1 = N_2 = 128$; d=2; and s=2. There are four super-quadrants in layout **100**H namely top-left super-quadrant, bottom-left super-quadrant, top-right super-quadrant, bottom-right

18

super-quadrant. Total number of blocks in the layout 100H is sixty four. Top-left super-quadrant implements the blocks from block 1_2 to block 31_32. Each block in all the super-quadrants has two more switches namely switch 6 and switch 7 in addition to the switches [1-5] illustrated in layout 100C of FIG. 1C. The inter-block link connection topology is the exactly the same between the switches 1 and 2; switches 2 and 3; switches 3 and 4; switches 4 and 5 as it is shown in the layouts of FIG. 1D, FIG. 1E, FIG. 1F, and FIG. 1G respectively.

Bottom-left super-quadrant implements the blocks from block 33_34 to block 63_64. Top-right super-quadrant implements the blocks from block 65_66 to block 95_96. And bottom-right super-quadrant implements the blocks from block 97_98 to block 1_27_128. In all these three super-quadrants also, the inter-block link connection topology is exactly the same between the switches 1 and 2; switches 2 and 3; switches 3 and 4; switches 4 and 5 as that of the top-left super-quadrant.

Recursively in accordance with the current invention, the inter-block links connecting the switch 5 and switch 6 will be vertical tracks between the corresponding switches of top-left super-quadrant and bottom-left super-quadrant. And similarly the inter-block links connecting the switch 5 and switch 6 will be vertical tracks between the corresponding switches of top-right super-quadrant and bottom-right super-quadrant. The inter-block links connecting the switch 6 and switch 7 will be horizontal tracks between the corresponding switches of top-left super-quadrant and top-right super-quadrant. And similarly the inter-block links connecting the switch 6 and switch 7 will be horizontal tracks between the corresponding switches of bottom-left super-quadrant and bottom-right super-quadrant.

Just as described for layout 100F of FIG. 1F, Applicant notes that the connection topology of inter-block links between switches 5 and 6 of each block of layout 100H of FIG. 1H is not the typical inverse Benes Network topology. In layout 100H first the switches 5 and 6 of nearest neighbor blocks are connected and then the rest of the blocks are connected in inverse Benes Network topology. For example since Block 11_12 and Block 33_34 are nearest neighbors in the leftmost column of layout 100H the corresponding interblock links from switches 5 and 6 are connected together first. Then the remaining blocks in the leftmost column are connected in inverse Benes topology. For example in layout 100H since the remaining blocks in the leftmost column of top-left super-quadrant are Block 1_2, Block 3_4, and Block 9_10 and the remaining blocks in the leftmost column of bottomleft super-quadrant are Block 35_36, Block 41_42 and Block 43_44 the inter-block links between their corresponding switches 5 and 6 are connected together. In one embodiment the inter-block links of switches 5 and 6 corresponding to Block 1_2 and Block 35-36 are connected together; the interblock links of switches 5 and 6 corresponding to Block 3_4 and Block 41_42 are connected together; and the inter-block links of switches 5 and 6 corresponding to Block 9_10 and Block 43_44 are connected together. (Similarly in another embodiment any one of the three blocks in the leftmost column of top-left super-quadrant can be connected with any one of the three blocks in the leftmost column of bottom-left super-quadrant of course as long as each block in leftmost column of top-left super-quadrant is connected to only one block in leftmost column of bottom-left super-quadrant and vice versa). Similarly in all the columns, the inter-block links between switches 5 and 6 are connected.

The bandwidth offered between top super-quadrants and bottom super-quadrants in layout 100H of FIG. 1H is 8's BW,

since the bandwidth offered with in a square of blocks with the sides of the square consisting of eight neighboring blocks is 8's BW. It must be noted that the bandwidth offered between top-left super-quadrant and bottom-left super-quadrant is 8's BW. That is inter-block links of a switch in each one 5 of the blocks in top-left super-quadrant are connected to a switch in any one of the blocks in bottom-left super-quadrant and vice versa. Similarly the bandwidth offered between topright super-quadrant and bottom-right super-quadrant is 8's BW. For example in one embodiment the bandwidth provided between Block 1 2 and Block 35 36 of layout 100H of FIG. 1H is 8's BW because inter-block links between switch 5 of Block 1_2 and switch 6 of Block 35_36 are connected and also inter-block links between switch 5 of Block 1_2 and switch 6 of Block 35_36 are connected. Similarly the band- 15 width provided between any one of the blocks in top-left super-quadrant and any one of the bottom-left super-quadrant of layout 100H of FIG. 1H is 8's BW. It must be noted that the 8's BW is the bandwidth offered between the four superquadrants in a square of four super-quadrants and it is neither 20 the bandwidth offered between the four quadrants in one of the super-quadrants or with in each quadrant.

Just as described for layout 100G of FIG. 1G, Applicant notes that the connection topology of inter-block links between switches 6 and 7 of each block of layout 100H of 25 FIG. 1H is not the typical inverse Benes Network topology. In layout 100H first the switches 6 and 7 of nearest neighbor blocks are connected and then the rest of the blocks are connected in inverse Benes Network topology. For example since Block 21_22 and Block 65_66 are nearest neighbors in 30 the topmost row of layout 100H the corresponding interblock links from switches 6 and 7 are connected together first. Then the remaining blocks in the topmost row are connected in inverse Benes topology. For example in layout 100H since the remaining blocks in the topmost row of top-left super- 35 quadrant are Block 1_2, Block 5_6, and Block 17_18 and the remaining blocks in the topmost row of top-right super-quadrant are Block 69_70, Block 81_82 and Block 85_86 the inter-block links between their corresponding switches 6 and 7 are connected together. In one embodiment the inter-block 40 links of switches 6 and 7 corresponding to Block 1_2 and Block 69-70 are connected together; the inter-block links of switches 6 and 7 corresponding to Block 5_6 and Block 81-82 are connected together; and the inter-block links of switches 6 and 7 corresponding to Block 17_18 and Block 85-86 are 45 connected together. (Similarly in another embodiment any one of the three blocks in the topmost row of top-left superquadrant can be connected with any one of the three blocks in the topmost row of top-right super-quadrant of course as long as each block in topmost row of top-right super-quadrant is 50 connected to only one block in topmost row of top-right super-quadrant and vice versa). Similarly in all the rows, the inter-block links between switches 6 and 7 are connected.

The bandwidth offered between left super-quadrants and right super-quadrants in layout **100**H of FIG. 1H is 8's BW, 55 since the bandwidth offered with in a square of blocks with the sides of the square consisting of eight neighboring blocks is 8's BW. It must be noted that the bandwidth offered between top-left super-quadrant and top-right super-quadrant is 8's BW. That is inter-block links of a switch in each one of 60 the blocks in top-left super-quadrant are connected to a switch in any one of the blocks in top-right super-quadrant and vice versa. Similarly the bandwidth offered between bottom-left super-quadrant and bottom-right super-quadrant is 8's BW. For example in one embodiment the bandwidth provided 65 between Block **1_2** and Block **69_70** of layout **100**H of FIG. 1H is 8's BW because inter-block links between switch **6** of

Block 1_2 and switch 7 of Block 69_70 are connected and also inter-block links between switch 6 of Block 1_2 and switch 7 of Block 69_70 are connected. Similarly the bandwidth provided between any one of the blocks in top-left super-quadrant and any one of the blocks in top-right super-quadrant of layout 100H of FIG. 1H is 8's BW. Just the same way 2's BW is provided between two diagonal blocks, the bandwidth offered between two diagonal super-quadrants is 8's BW that is when the corresponding row and columns provide 8's BW.

Referring to diagram 100I of FIG. 1I illustrates a high-level implementation of Block 1_2 (Each of the other blocks have similar implementation) of the layout 100C of FIG. 1C which represents a generalized folded multi-link multi-stage network $V_{fold-mlink}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d = 2; and s = 2. Block 1_2 in 100I illustrates both the intra-block and interblock links connected to Block 1_2. The layout diagram 100I corresponds to the embodiment where the switches that are placed together are implemented as separate switches in the network 100B of FIG. 1B. As noted before then the network 100B is the generalized folded multi-link multi-stage network $V_{fold-mlink}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d = 2; and s = 2 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,389 that is incorporated by reference above.

That is the switches that are placed together in Block 1_2 as shown in FIG. 1I are namely input switch IS1 and output switch OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switches implemented are input switch IS1 and output switch OS1); middle switch MS(1,1) and middle switch MS(7,1) belonging to switch 2; middle switch MS(2,1) and middle switch MS(6,1) belonging to switch 3; middle switch MS(3,1) and middle switch MS(5,1) belonging to switch 5.

Input switch IS1 is implemented as two by four switch with the inlet links IL 1 and IL2 being the inputs of the input switch IS1 and middle links ML(1,1)-ML(1,4) being the outputs of the input switch IS1; and output switch OS1 is implemented as four by two switch with the middle links ML(8,1), ML(8,2), ML(8,7), and ML(8,8) being the inputs of the output switch OS1 and outlet links OL1-OL2 being the outputs of the output switch OS1.

Middle switch MS(1,1) is implemented as four by four switch with the middle links ML(1,1), ML(1,2), ML(1,7) and ML(1,8) being the inputs and middle links ML(2,1)-ML(2,4) being the outputs; and middle switch MS(7,1) is implemented as four by four switch with the middle links ML(7,1), ML(7,2), ML(7,11) and ML(7,12) being the inputs and middle links ML(8,1)-ML(8,4) being the outputs. Similarly all the other middle switches are also implemented as four by four switches as illustrated in 100I of FIG. 1I.

Generalized Multi-link Butterfly Fat Tree Network Embodiment:

In another embodiment in the network 100B of FIG. 1B, the switches that are placed together are implemented as combined switch then the network 100B is the generalized multi-link butterfly fat tree network $V_{mlink-b,fl}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=2 with five stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,390 that is incorporated by reference above. That is the switches that are placed together in input stage 110 and output stage 120 are implemented as a six by six switch. For example the input switch IS1 and output oS1 are placed together; so input switch IS1 and output OS1 are implemented as a six by six switch with the inlet links ILL IL2, ML(8,1), ML(8,2), ML(8,7) and ML(8,8) being the inputs of the combined

switch (denoted as IS1&OS1) and middle links ML(1,1), ML(1,2), ML(1,3), ML(1,4), OL1 and OL2 being the outputs of the combined switch IS1&OS1. Similarly in this embodiment of network 100B all the switches that are placed together are implemented as a combined switch.

Layout diagrams 100C in FIG. 1C, 100D in FIG. 1D, 100E in FIG. 1E, 100F in FIG. 1G are also applicable to generalized multi-link butterfly fat tree network $V_{\textit{mlink-bft}}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d = 2; and s = 2 with five stages. The layout 100C in FIG. 1C can be recursively extended for any arbitrarily large generalized multi-link butterfly fat tree network $V_{\textit{mlink-bft}}(N_1, N_2, d, s)$. Accordingly layout 100H of FIG. 1H is also applicable to generalized multi-link butterfly fat tree network $V_{\textit{mlink-bft}}(N_1, N_2, d, s)$.

Referring to diagram 100J of FIG. 1J illustrates a highlevel implementation of Block 1_2 (Each of the other blocks have similar implementation) of the layout 100C of FIG. 1C which represents a generalized multi-link butterfly fat tree network $V_{mlink-bfl}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d = 2; and s = 2. Block 1_2 in 100J illustrates both the intra-block and 20 inter-block links. The layout diagram 100J corresponds to the embodiment where the switches that are placed together are implemented as combined switch in the network 100B of FIG. 1B. As noted before then the network 100B is the generalized multi-link butterfly fat tree network $V_{mlink-bfl}(N_1, N_2, 25$ d, s) where $N_1 = N_2 = 32$; d = 2; and s = 2 with five stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,390 that is incorporated by reference above.

That is the switches that are placed together in Block 1_2 as shown in FIG. 1J are namely the combined input and output 30 switch IS1&OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switch implemented is combined input and output switch IS1&OS1); middle switch MS(1,1) belonging to switch 2; middle switch MS(2,1) belonging to 35 switch 3; middle switch MS(3,1) belonging to switch 4; And middle switch MS(4,1) belonging to switch 5.

Combined input and output switch IS1&OS1 is implemented as six by six switch with the inlet links ILL IL2 and ML(8,1), ML(8,2), ML(8,7), and ML(8,8) being the inputs 40 and middle links ML(1,1)-ML(1,4), and outlet links OL1-OL2 being the outputs.

Middle switch $\overline{MS}(1,1)$ is implemented as eight by eight switch with the middle links ML(1,1), ML(1,2), ML(1,7), ML(1,8), ML(7,1), ML(7,2), ML(7,11) and ML(7,12) being 45 the inputs and middle links ML(2,1)-ML(2,4) and middle links ML(8,1)-ML(8,4) being the outputs. Similarly all the other middle switches are also implemented as eight by eight switches as illustrated in 100J of FIG. 1J.

In another embodiment, middle switch MS(1,1) (or the 50 middle switches in any of the middle stage excepting the root middle stage) of Block 1_2 of $V_{mlink-bft}(N_1, N_2, d, s)$ can be implemented as a four by eight switch and a four by four switch to save cross points. This is because the left going middle links of these middle switches are never setup to the 55 right going middle links. For example, in middle switch MS(1,1) of Block 1_2 as shown FIG. 1J, the left going middle links namely ML(7,1), ML(7,2), ML(7,11), and ML(7,12)are never switched to the right going middle links ML(2,1), ML(2,2), ML(2,3), and ML(2,4). And hence to implement 60 MS(1,1) two switches namely: 1) a four by eight switch with the middle links ML(1,1), ML(1,2), ML(1,7), and ML(1,8) as inputs and the middle links ML(2,1), ML(2,2), ML(2,3), ML(2,4), ML(8,1), ML(8,2), ML(8,3), and ML(8,4) as outputs and 2) a four by four switch with the middle links ML(7, 1), ML(7,2), ML(7,11), and ML(7,12) as inputs and the middle links ML(8,1), ML(8,2), ML(8,3), and ML(8,4) as

outputs are sufficient without loosing any connectivity of the embodiment of MS(1,1) being implemented as an eight by eight switch as described before.)

22

Generalized Multi-Stage Network Embodiment:

In one embodiment, in the network 100B of FIG. 1B, the switches that are placed together are implemented as two separate switches in input stage 110 and output stage 120; and as four separate switches in all the middle stages, then the network 100B is the generalized folded multi stage network $V_{fold}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d=2; and s=2 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,391 that is incorporated by reference above. That is the switches that are placed together in input stage 110 and output stage 120 are implemented as a two by four switch and a four by two switch respectively. For example the switch input switch IS1 and output switch OS1 are placed together; so input switch IS1 is implemented as two by four switch with the inlet links IL1 and IL2 being the inputs and middle links ML(1,1)-ML(1,4) being the outputs; and output switch OS1 is implemented as four by two switch with the middle links ML(8,1), ML(8,2), ML(8,7) and ML(8,8) being the inputs and outlet links OL1-OL2 being the outputs.

The switches, corresponding to the middle stages that are placed together are implemented as four two by two switches. For example middle switches MS(1,1), MS(1,17), MS(7,1), and MS(7,17) are placed together; so middle switch MS(1,1)is implemented as two by two switch with middle links ML(1, 1) and ML(1,7) being the inputs and middle links ML(2,1)and ML(2,3) being the outputs; middle switch MS(1,17) is implemented as two by two switch with the middle links ML(1,2) and ML(1,8) being the inputs and middle links ML(2,2) and ML(2,4) being the outputs; middle switch MS(7,1) is implemented as two by two switch with middle links ML(7,1) and ML(7,11) being the inputs and middle links ML(8,1) and ML(8,3) being the outputs; And middle switch MS(7,17) is implemented as two by two switch with the middle links ML(7,2) and ML(7,12) being the inputs and middle links ML(8,2) and ML(8,4) being the outputs; Similarly in this embodiment of network 100B all the switches that are placed together are implemented as separate switches.

Layout diagrams 100C in FIG. 1C, 100D in FIG. 1D, 100E in FIG. 1E, 100F in FIG. 1G are also applicable to generalized folded multi-stage network $V_{fold}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d=2; and s=2 with nine stages. The layout 100C in FIG. 1C can be recursively extended for any arbitrarily large generalized folded multi-stage network $V_{fold}(N_1, N_2, d, s)$. Accordingly layout 100H of FIG. 1H is also applicable to generalized folded multi-stage network $V_{fold}(N_1, N_2, d, s)$.

Referring to diagram 100K of FIG. 1K illustrates a high-level implementation of Block 1_2 (Each of the other blocks have similar implementation) of the layout 100C of FIG. 1C which represents a generalized folded multi-stage network $V_{fold}(N_1,N_2,d,s)$ where $N_1 = N_2 = 32$; d = 2; and s = 2. Block 1_2 in 100K illustrates both the intra-block and inter-block links. The layout diagram 100K corresponds to the embodiment where the switches that are placed together are implemented as separate switches in the network 100B of FIG. 1B. As noted before then the network 100B is the generalized folded multi-stage network $V_{fold}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d = 2; and s = 2 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,391 that is incorporated by reference above.

That is the switches that are placed together in Block 1_2 as shown in FIG. 1K are namely the input switch IS1 and output switch OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switches implemented are input switch IS1 and

output switch OS1); middle switches MS(1,1), MS(1,17), MS(7,1) and MS(7,17) belonging to switch 2; middle switches MS(2,1), MS(2,17), MS(6,1) and MS(6,17) belonging to switch 3; middle switches MS(3,1), MS(3,17), MS(5,1) and MS(5,17) belonging to switch 4; And middle switches MS(4,1), and MS(4,17) belonging to switch 5.

Input switch IS1 and output switch OS1 are placed together; so input switch IS1 is implemented as two by four switch with the inlet links IL1 and IL2 being the inputs and middle links ML(1,1)-ML(1,4) being the outputs; and output switch OS1 is implemented as four by two switch with the middle links ML(8,1), ML(8,2), ML(8,7) and ML(8,8) being the inputs and outlet links OL1-OL2 being the outputs.

Middle switches MS(1,1), MS(1,17), MS(7,1), and MS(7, $_{15}$ 17) are placed together; so middle switch MS(1,1) is implemented as two by two switch with middle links ML(1,1) and ML(1,7) being the inputs and middle links ML(2,1) and ML(2,3) being the outputs; middle switch MS(1,17) is implemented as two by two switch with the middle links ML(1,2) 20 and ML(1,8) being the inputs and middle links ML(2,2) and ML(2,4) being the outputs; middle switch MS(7,1) is implemented as two by two switch with middle links ML(7,1) and ML(7,11) being the inputs and middle links ML(8,1) and ML(8,3) being the outputs; And middle switch MS(7,17) is 25 implemented as two by two switch with the middle links ML(7,2) and ML(7,12) being the inputs and middle links ML(8,2) and ML(8,4) being the outputs. Similarly all the other middle switches are also implemented as two by two switches as illustrated in 100K of FIG. 1K.

Generalized Multi-Stage Network Embodiment with S=1:

In one embodiment, in the network 100B of FIG. 1B (where it is implemented with s=1), the switches that are placed together are implemented as two separate switches in input stage 110 and output stage 120; and as two separate 35 switches in all the middle stages, then the network 100B is the generalized folded multi-stage network V_{fold}(N₁, N₂, d, s) where $N_1=N_2=32$; d=2; and s=1 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,391 that is incorporated by reference above. That is the switches 40 that are placed together in input stage 110 and output stage 120 are implemented as two, two by two switches. For example the switch input switch IS1 and output switch OS1 are placed together; so input switch IS1 is implemented as two by two switch with the inlet links IL1 and IL2 being the 45 inputs and middle links ML(1,1)-ML(1,2) being the outputs; and output switch OS1 is implemented as two by two switch with the middle links ML(8,1) and ML(8,3) being the inputs and outlet links OL1-OL2 being the outputs.

The switches, corresponding to the middle stages that are 50 placed together are implemented as two, two by two switches. For example middle switches MS(1,1) and MS(7,1) are placed together; so middle switch MS(1,1) is implemented as two by two switch with middle links ML(1,1) and ML(1,3) being the inputs and middle links ML(2,1) and ML(2,2) being 55 the outputs; middle switch MS(7,1) is implemented as two by two switch with middle links ML(7,1) and ML(7,5) being the inputs and middle links ML(8,1) and ML(8,2) being the outputs; Similarly in this embodiment of network 100B all the switches that are placed together are implemented as two 60 separate switches.

Layout diagrams 100C in FIG. 1C, 100D in FIG. 1D, 100E in FIG. 1E, 100F in FIG. 1G are also applicable to generalized folded multi-stage network $V_{fold}(N_1,\ N_2,\ d,\ s)$ where N_1 = N_2 =32; d=2; and s=1 with nine stages. The layout 100C in FIG. 1C can be recursively extended for any arbitrarily large generalized folded multi-stage network $V_{fold}(N_1,\ N_2,\ d,\ s)$

d, s). Accordingly layout **100**H of FIG. 1H is also applicable to generalized folded multi-stage network $V_{fold}(N_1,N_2,d,s)$.

Referring to diagram 100K1 of FIG. 1K1 illustrates a highlevel implementation of Block 1_2 (Each of the other blocks have similar implementation) for the layout 100C of FIG. 1C when s=1 which represents a generalized folded multi-stage network $V_{fold}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=1 (All the double links are replaced by single links when s=1). Block 1_2 in 100K1 illustrates both the intra-block and interblock links. The layout diagram 100K1 corresponds to the embodiment where the switches that are placed together are implemented as separate switches in the network 100B of FIG. 1B when s=1. As noted before then the network 100B is the generalized folded multi-stage network $V_{fold}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=1 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,391 that is incorporated by reference above.

That is the switches that are placed together in Block 1_2 as shown in FIG. 1K1 are namely the input switch IS1 and output switch OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switches implemented are input switch IS1 and output switch OS1); middle switches MS(1,1) and MS(7,1) belonging to switch 2; middle switches MS(2,1) and MS(6,1) belonging to switch 3; middle switches MS(3,1) and MS(5,1) belonging to switch 4; And middle switch MS(4,1) belonging to switch 5.

Input switch IS1 and output switch OS1 are placed together; so input switch IS1 is implemented as two by two switch with the inlet links IL1 and IL2 being the inputs and middle links ML(1,1)-ML(1,2) being the outputs; and output switch OS1 is implemented as two by two switch with the middle links ML(8,1) and ML(8,3) being the inputs and outlet links OL1-OL2 being the outputs.

Middle switches MS(1,1) and MS(7,1) are placed together; so middle switch MS(1,1) is implemented as two by two switch with middle links ML(1,1) and ML(1,3) being the inputs and middle links ML(2,1) and ML(2,2) being the outputs; And middle switch MS(7,1) is implemented as two by two switch with middle links ML(7,1) and ML(7,5) being the inputs and middle links ML(8,1) and ML(8,2) being the outputs. Similarly all the other middle switches are also implemented as two by two switches as illustrated in 100K1 of FIG.

Generalized Butterfly Fat Tree Network Embodiment:

In another embodiment in the network 100B of FIG. 1B, the switches that are placed together are implemented as two combined switches then the network 100B is the generalized butterfly fat tree network $V_{bt}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d=2; and s=2 with five stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,387 that is incorporated by reference above. That is the switches that are placed together in input stage 110 and output stage 120 are implemented as a six by six switch. For example the input switch IS1 and output switch OS1 are placed together; so input output switch IS1&OS1 are implemented as a six by six switch with the inlet links ILL IL2, ML(8,1), ML(8,2), ML(8, 7) and ML(8,8) being the inputs of the combined switch (denoted as IS1&OS1) and middle links ML(1,1), ML(1,2), ML(1,3), ML(1,4), OL1 and OL2 being the outputs of the combined switch IS1&OS1.

The switches, corresponding to the middle stages that are placed together are implemented as two four by four switches. For example middle switches MS(1,1) and MS(1, 17) are placed together; so middle switch MS(1,1) is implemented as four by four switch with middle links ML(1,1), ML(1,7), ML(7,1) and ML(7,11) being the inputs and middle

links ML(2,1), ML(2,3), ML(8,1) and ML(8,3) being the outputs; middle switch MS(1,17) is implemented as four by four switch with the middle links ML(1,2), ML(1,8), ML(7,2) and ML(7,12) being the inputs and middle links ML(2,2), ML(2,4), ML(8,2) and ML(8,4) being the outputs. Similarly in this embodiment of network $100\mathrm{B}$ all the switches that are placed together are implemented as a two combined switches.

Layout diagrams 100C in FIG. 1C, 100D in FIG. 1D, 100E in FIG. 1E, 100F in FIG. 1G are also applicable to generalized butterfly fat tree network $V_{bfl}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d=2; and s=2 with five stages. The layout 100C in FIG. 1C can be recursively extended for any arbitrarily large generalized butterfly fat tree network $V_{bfl}(N_1, N_2, d, s)$. Accordingly layout 100H of FIG. 1H is also applicable to generalized butterfly fat tree network $V_{bfl}(N_1, N_2, d, s)$.

Referring to diagram 100L of FIG. 1L illustrates a high-level implementation of Block 1_2 (Each of the other blocks have similar implementation) of the layout 100C of FIG. 1C which represents a generalized butterfly fat tree network V_{bff} (N_1 , N_2 , d, s) where $N_1 = N_2 = 32$; d=2; and s=2. Block 1_2 in 20 100L illustrates both the intra-block and inter-block links. The layout diagram 100L corresponds to the embodiment where the switches that are placed together are implemented as two combined switches in the network 100B of FIG. 1B. As noted before then the network 100B is the generalized butterfly fat tree network $V_{bff}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d=2; and s=2 with five stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,387 that is incorporated by reference above.

That is the switches that are placed together in Block 1_2 as shown in FIG. 1L are namely the combined input and output switch IS1&OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switch implemented is combined input and output switch IS1&OS1); middle switch MS(1,1) and 35 MS(1,17) belonging to switch 2; middle switch MS(2,1) and MS(2,17) belonging to switch 3; middle switch MS(3,1) and MS(3,17) belonging to switch 4; And middle switch MS(4,1) belonging to switch 5.

Combined input and output switch IS1&OS1 is imple-40 mented as six by six switch with the inlet links ILL IL2, ML(8,1), ML(8,2), ML(8,7) and ML(8,8) being the inputs and middle links ML(1,1)-ML(1,4) and outlet links OL1-OL2 being the outputs.

Middle switch MS(1,1) is implemented as four by four 45 switch with middle links ML(1,1), ML(1,7), ML(7,1) and ML(7,11) being the inputs and middle links ML(2,1), ML(2, 3), ML(8,1) and ML(8,3) being the outputs; And middle switch MS(1,17) is implemented as four by four switch with the middle links ML(1,2), ML(1,8), ML(7,2) and ML(7,12) 50 being the inputs and middle links ML(2,2), ML(2,4), ML(8,2) and ML(8,4) being the outputs. Similarly all the other middle switches are also implemented as two four by four switches as illustrated in 100L of FIG. 1L.

In another embodiment, middle switch MS(1,1) (or the 55 middle switches in any of the middle stage excepting the root middle stage) of Block 1_2 of $V_{mlink-bft}(N_1, N_2, d, s)$ can be implemented as a two by four switch and a two by two switch to save cross points. This is because the left going middle links of these middle switches are never setup to the right 60 going middle links. For example, in middle switch MS(1,1) of Block 1_2 as shown FIG. 1L, the left going middle links namely ML(7,1) and ML(7,11) are never switched to the right going middle links ML(2,1) and ML(2,3). And hence to implement MS(1,1) two switches namely: 1) a two by four 65 switch with the middle links ML(1,1) and ML(1,7) as inputs and the middle links ML(2,1), ML(2,3), ML(8,1), and ML(8,1)

3) as outputs and 2) a two by two switch with the middle links ML(7,1) and ML(7,11) as inputs and the middle links ML(8, 1) and ML(8,3) as outputs are sufficient without loosing any connectivity of the embodiment of MS(1,1) being implemented as an eight by eight switch as described before.) Generalized Butterfly Fat Tree Network Embodiment with S=1:

26

In one embodiment, in the network 100B of FIG. 1B (where it is implemented with s=1), the switches that are placed together are implemented as a combined switch in input stage 110 and output stage 120; and as a combined switch in all the middle stages, then the network 100B is the generalized butterfly fat tree network $V_{\textit{bft}}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=1 with five stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,387 that is incorporated by reference above. That is the switches that are placed together in input stage 110 and output stage 120 are implemented as a four by four switch. For example the switch input switch IS1 and output switch OS1 are placed together; so input and output switch IS1&OS1 is implemented as four by four switch with the inlet links ILL IL2, ML(8,1) and ML(8,3) being the inputs and middle links ML(1,1)-ML(1,2)and outlet links OL1-OL2 being the outputs

The switches, corresponding to the middle stages that are placed together are implemented as a four by four switch. For example middle switches MS(1,1) is implemented as four by four switch with middle links ML(1,1), ML(1,3), ML(7,1) and ML(7,5) being the inputs and middle links ML(2,1), ML(2,2), ML(8,1) and ML(8,2) being the outputs.

Layout diagrams 100C in FIG. 1C, 100D in FIG. 1D, 100E in FIG. 1E, 100F in FIG. 1G are also applicable to generalized butterfly fat tree network $V_{bft}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d=2; and s=1 with five stages. The layout 100C in FIG. 1C can be recursively extended for any arbitrarily large generalized butterfly fat tree network $V_{bft}(N_1, N_2, d, s)$. Accordingly layout 100H of FIG. 1H is also applicable to generalized butterfly fat tree network $V_{bft}(N_1, N_2, d, s)$.

Referring to diagram 100L1 of FIG. 1L1 illustrates a high-level implementation of Block 1_2 (Each of the other blocks have similar implementation) for the layout 100C of FIG. 1C when s=1 which represents a generalized butterfly fat tree network $V_{bpt}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=1 (All the double links are replaced by single links when s=1). Block 1_2 in 100K1 illustrates both the intra-block and interblock links. The layout diagram 100L1 corresponds to the embodiment where the switches that are placed together are implemented as a combined switch in the network 100B of FIG. 1B when s=1. As noted before then the network 100B is the generalized butterfly fat tree network $V_{bpt}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=1 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,387 that is incorporated by reference above.

That is the switches that are placed together in Block 1_2 as shown in FIG. 1L1 are namely the input and output switch IS1&OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switches implemented are input switch IS1 and output switch OS1); middle switch MS(1,1) belonging to switch 2; middle switch MS(2,1) belonging to switch 3; middle switch MS(3,1) belonging to switch 4; And middle switch MS(4,1) belonging to switch 5.

Input and output switch IS1&OS1 are placed together; so input and output switch IS1&OS1 is implemented as four by four switch with the inlet links ILL IL2, ML(8,1) and ML(8,3) being the inputs and middle links ML(1,1)-ML(1,2) and outlet links OL1-OL2 being the outputs.

Middle switch MS(1,1) is implemented as four by four switch with middle links ML(1,1), ML(1,3), ML(7,1) and ML(7,5) being the inputs and middle links ML(2,1), ML(2,2), ML(8,1) and ML(8,2) being the outputs. Similarly all the other middle switches are also implemented as four by four 5 switches as illustrated in 100L1 of FIG. 1L1.

In another embodiment, middle switch MS(1,1) (or the middle switches in any of the middle stage excepting the root middle stage) of Block 1_2 of $V_{mlink-bft}(N_1, N_2, d, s)$ can be implemented as a two by four switch and a two by two switch to save cross points. This is because the left going middle links of these middle switches are never setup to the right going middle links. For example, in middle switch MS(1,1) of Block 1_2 as shown FIG. 1L1, the left going middle links namely ML(7,1) and ML(7,5) are never switched to the right 15 going middle links ML(2,1) and ML(2,2). And hence to implement MS(1,1) two switches namely: 1) a two by four switch with the middle links ML(1,1) and ML(1,3) as inputs and the middle links ML(2,1), ML(2,2), ML(8,1), and ML(8,1)2) as outputs and 2) a two by two switch with the middle links 20 ML(7,1) and ML(7,5) as inputs and the middle links ML(8,1)and ML(8,2) as outputs are sufficient without loosing any connectivity of the embodiment of MS(1,1) being implemented as an eight by eight switch as described before.) Symmetric RNB Generalized Multi-Link Multi-Stage Net- 25 work $V_{mlink}(N_1, N_2, d, s)$, Connection Topology with $N_1 \neq 2^x \&$ $N_2 \neq 2^y$ where x and y are integers:

Referring to diagram 200A in FIG. 2A, in one embodiment, an exemplary generalized multi-link multi-stage network $V_{mlink}(N_1, N_2, d, s)$ where $N_1 = N_2 = 24$ and $2^4 < N = 24 < 2^5$; d=2; and s=2 with nine stages of ninety two switches for satisfying communication requests, such as setting up a telephone call or a data call, or a connection between configurable logic blocks, between an input stage 110 and output stage 120 via middle stages 130, 140, 150, 160, 170, 180 and 35 190 is shown where input stage 110 consists of twelve, two by four switches IS1-IS12 and output stage 120 consists of twelve, four by two switches OS1-OS12. And the middle stages namely the middle stage 130 consists of twelve, four by four switches MS(1,1)-MS(1,12), middle stage 140 con- 40 sists of eight, four by four switches MS(2,1)-MS(2,8), middle stage 180 consists of eight, four by four switches MS(6,1)-MS(6,8), and middle stage 190 consists of twelve, four by four switches MS(7,1)-MS(7,12); middle stage 150 consists of twelve, four by four switches MS(3,1)-MS(3,12), middle 45 stage 160 consists of eight, four by four switches MS(4,1)-MS(4.2), MS(4.5)-MS(4.6), MS(4.9)-MS(4.12), middle stage 170 consists of eight, four by four switches MS(5,1)-MS(5,2), MS(5,5)-MS(5,6), MS(5,9)-MS(5,12).

Such a generalized multi-link multi-stage network V_{mlink} 50 (N_1 , N_2 , d, s) where $N_1 \neq 2^x \& N_2 \neq 2^y$ where x and y are integers, can be operated in rearrangeably non-blocking manner for arbitrary fan-out multicast connections and also can be operated in strictly non-blocking manner for unicast connections, just the same way as when $N_1 = 2^x \& N_2 = 2^y$ where x and 55 y are integers, as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,389 that is incorporated by reference above.

In one embodiment of this network each of the input switches IS1-IS12 and output switches OS1-OS12 are crossbar switches. The number of switches of input stage 110 and of output stage 120 can be denoted in general with the variable N/d, where N is the total number of inlet links or outlet links. The number of middle switches in each middle stage is denoted by a maximum of N/d. The size of each input switch IS1-IS12 can be denoted in general with the notation d*2d and each output switch OS1-OS12 can be denoted in general

with the notation 2d*d. Likewise, the size of each switch in any of the middle stages can be denoted as 2d*2d. A switch as used herein can be either a crossbar switch, or a network of switches each of which in turn may be a crossbar switch or a network of switches. A symmetric multi-stage network can be represented with the notation $V_{mlink}(N, d, s)$, where N represents the total number of inlet links of all input switches (for example the links IL1-IL32), d represents the inlet links of each input switch or outlet links of each output switch, and s is the ratio of number of outgoing links from each input switch to the inlet links of each input switch.

Each of the N/d input switches IS1-IS12 are connected to exactly d switches in middle stage 130 through two links each for a total of 2×d links (for example input switch IS1 is connected to middle switch MS(1,1) through the middle links ML(1,1), ML(1,2), and also connected to middle switch MS(1,2) through the middle links ML(1,3) and ML(1,4)). Just the same way as defined before, the middle links which connect switches in the same row in two successive middle stages are called hereinafter straight middle links; and the middle links which connect switches in different rows in two successive middle stages are called hereinafter cross middle links. For example, the middle links ML(1,1) and ML(1,2)connect input switch IS1 and middle switch MS(1,1), so middle links ML(1,1) and ML(1,2) are straight middle links; where as the middle links ML(1,3) and ML(1,4) connect input switch IS1 and middle switch MS(1,2), since input switch IS1 and middle switch MS(1,2) belong to two different rows in diagram 100A of FIG. 1A, middle links ML(1,3) and ML(1,4) are cross middle links.

Each of the N/d middle switches MS(1,1)-MS(1,12) in the middle stage 130 are connected from exactly d input switches through two links each for a total of 2×d links (for example the middle links ML(1,1) and ML(1,2) are connected to the middle switch MS(1,1) from input switch IS1, and the middle links ML(1,7) and ML(1,8) are connected to the middle switch MS(1,1) from input switch IS2). Each of the middle switches MS(1,1)-MS(1,8) are connected to exactly d switches in middle stage 140 through two links each for a total of $2\times d$ links (for example the middle links ML(2,1) and ML(2,2) are connected from middle switch MS(1,1) to middle switch MS(2,1), and the middle links ML(2,3) and ML(2,4) are connected from middle switch MS(1,1) to middle switch MS(2,3)); and each of the middle switches MS(1,9)-MS(1,12) are connected to exactly d switches in middle stage 150 through two links each for a total of 2xd links (for example the middle links ML(3.33) and ML(3.34)are connected from middle switch MS(1,9) to middle switch MS(3,9), and the middle links ML(3,35) and ML(3,36) are connected from middle switch MS(1,9) to middle switch MS(3,11)).

Each of the middle switches MS(2,1)-MS(2,8) in the middle stage 140 are connected from exactly d middle switches in middle stage 130 through two links each for a total of 2×d links (for example the middle links ML(2,1) and ML(2,2) are connected to the middle switch MS(2,1) from input switch MS(1,1), and the middle links ML(1,11) and ML(1,12) are connected to the middle switch MS(2,1) from input switch MS(1,3)) and also are connected to exactly d switches in middle stage 150 through two links each for a total of 2×d links (for example the middle links ML(3,1) and ML(3,2) are connected from middle switch MS(2,1) to middle switch MS(3,1), and the middle links ML(3,3) and ML(3,4) are connected from middle switch MS(2,1) to middle switch MS(3,5)).

Each of the N/d middle switches MS(3,1)-MS(3,12) in the middle stage 150 are connected from exactly d middle

switches in middle stage 140 through two links each for a total of 2×d links (for example the middle links ML(3,1) and ML(3,2) are connected to the middle switch MS(3,1) from input switch MS(2,1), and the middle links ML(2,19) and ML(2,20) are connected to the middle switch MS(3,1) from 5 input switch MS(2,5)). Each of the middle switches MS(3, 1)-MS(3,2), MS(3,5)-MS(3,6) and MS(3,9)-MS(3,12) are connected to exactly d switches in middle stage 160 through two links each for a total of 2xd links (for example the middle links ML(4,1) and ML(4,2) are connected from middle 10 switch MS(3,1) to middle switch MS(4,1), and the middle links ML(4,3) and ML(4,4) are connected from middle switch MS(3,1) to middle switch MS(4,9); and each of the middle switches MS(3,3)-MS(3,4) and MS(3,7)-MS(3,8) are connected to exactly d switches in middle stage 180 through 15 two links each for a total of 2×d links (for example the middle links ML(6,9) and ML(6,10) are connected from middle switch MS(3,3) to middle switch MS(6,3), and the middle links ML(6,11) and ML(6,12) are connected from middle switch MS(3.3) to middle switch MS(6.7)).

Each of the middle switches MS(4,1)-MS(4,2), MS(4,5)-MS(4,6) and MS(4,9)-MS(4,12) in the middle stage 160 are connected from exactly d middle switches in middle stage 150 through two links each for a total of 2×d links (for example the middle links ML(4,1) and ML(4,2) are connected to the middle switch MS(4,1) from input switch MS(3, 1), and the middle links ML(4,35) and ML(4,36) are connected to the middle switch MS(4,1) from input switch MS(3, 9)) and also are connected to exactly d switches in middle stage 170 through two links each for a total of 2×d links (for example the middle links ML(5,1) and ML(5,2) are connected from middle switch MS(4,1) to middle switch MS(5, 1), and the middle links ML(5,3) and ML(5,4) are connected from middle switch MS(4,1) to middle switch MS(5,9)).

Each of the middle switches MS(5,1)-MS(5,2), MS(5,5)- 35 MS(5,6) and MS(5,9)-MS(5,12) in the middle stage 170 are connected from exactly d middle switches in middle stage 160 through two links each for a total of 2xd links (for example the middle links ML(5,1) and ML(5,2) are connected to the middle switch MS(5,1) from input switch MS(4, 40)1), and the middle links ML(5,35) and ML(5,36) are connected to the middle switch MS(5,1) from input switch MS(4, 9)). Each of the middle switches MS(5,1)-MS(5,2), MS(5,5)-MS(5,6) are connected to exactly d switches in middle stage 180 through two links each for a total of 2xd links (for 45 example the middle links ML(6,1) and ML(6,2) are connected from middle switch MS(5.1) to middle switch MS(6. 1), and the middle links ML(6,3) and ML(6,4) are connected from middle switch MS(5,1) to middle switch MS(6,5); and Each of the middle switches MS(5,9)-MS(5,12) are con- 50 nected to exactly d switches in middle stage 190 through two links each for a total of 2×d links (for example the middle links ML(6,33) and ML(6,34) are connected from middle switch MS(5,9) to middle switch MS(7,9), and the middle links ML(6,35) and ML(6,36) are connected from middle 55 switch MS(5,9) to middle switch MS(7,11)).

Each of the N/d middle switches MS(6,1)-MS(6,8) in the middle stage 180 are connected from exactly d middle switches in middle stage 170 through two links each for a total of $2\times d$ links (for example the middle links ML(6,1) and 60 ML(6,2) are connected to the middle switch MS(6,1) from input switch MS(5,1), and the middle links ML(6,19) and ML(6,20) are connected to the middle switch MS(6,1) from input switch MS(5,5)) and also are connected to exactly d switches in middle stage 190 through two links each for a total 65 of $2\times d$ links (for example the middle links ML(7,1) and ML(7,2) are connected from middle switch MS(6,1) to

middle switch MS(7,1), and the middle links ML(7,3) and ML(7,4) are connected from middle switch MS(6,1) to middle switch MS(7,3)).

30

Each of the N/d middle switches MS(7,1)-MS(7,12) in the middle stage 190 are connected from exactly d middle switches in middle stage 180 through two links each for a total of 2×d links (for example the middle links ML(7,1) and ML(7,2) are connected to the middle switch MS(7,1) from input switch MS(6,1), and the middle links ML(7,11) and ML(7,12) are connected to the middle switch MS(7,1) from input switch MS(6,3)) and also are connected to exactly d switches in middle stage 120 through two links each for a total of 2×d links (for example the middle links ML(8,1) and ML(8,2) are connected from middle switch MS(7,1) to middle switch MS(8,1), and the middle links ML(8,3) and ML(8,4) are connected from middle switch MS(7,1) to middle switch OS2).

Each of the N/d middle switches OS1-OS12 in the middle stage 120 are connected from exactly d middle switches in middle stage 190 through two links each for a total of 2×d links (for example the middle links ML(8,1) and ML(8,2) are connected to the output switch OS1 from input switch MS(7, 1), and the middle links ML(8,7) and ML(8,8) are connected to the output switch OS1 from input switch MS(7,2)).

Referring to diagram 200B in FIG. 2B, is a folded version of the multi-link multi-stage network 200A shown in FIG. 2A. The network 200B in FIG. 2B shows input stage 110 and output stage 120 are placed together. That is input switch IS1 and output switch OS1 are placed together, input switch IS2 and output switch IS12 and output switch OS2 are placed together, and similarly input switch IS12 and output switch OS12 are placed together. All the right going links {i.e., inlet links IL1-IL24 and middle links ML(1,1)-ML(1, 48)} correspond to input switches IS1-IS12, and all the left going links {i.e., middle links ML(8,1)-ML(8,48) and outlet links OL1-OL24} correspond to output switches OS1-OS12.

Middle stage 130 and middle stage 190 are placed together. That is middle switches MS(1,1) and MS(7,1) are placed together, middle switches MS(1,2) and MS(7,2) are placed together, and similarly middle switches MS(1,12) and MS(7, 12) are placed together. All the right going middle links {i.e., middle links ML(1,1)-ML(1,48) and middle links ML(2,1)-ML(2,32) and the middle links ML(3,33)-ML(3,48)} correspond to middle switches MS(1,1)-MS(1,12), and all the left going middle links {i.e., middle links ML(7,1)-ML(7,32) and middle links ML(6,33)-ML(6,48) and middle links ML(8,1) and ML(8,48)} correspond to middle switches MS(7,1)-MS(7,12).

Middle stage 140 and middle stage 180 are placed together. That is middle switches MS(2,1) and MS(6,1) are placed together, middle switches MS(2,2) and MS(6,2) are placed together, and similarly middle switches MS(2,8) and MS(6,8) are placed together. All the right going middle links $\{i.e.,$ middle links ML(2,1)-ML(2,48) and middle links ML(3,1)- $ML(3,48)\}$ correspond to middle switches MS(2,1)-MS(2,8), and all the left going middle links $\{i.e.,$ middle links ML(6,1)-ML(6,48) and middle links ML(7,1) and $ML(7,48)\}$ correspond to middle switches MS(6,1)-MS(6,8).

Middle stage 150 and middle stage 170 are placed together. That is middle switches MS(3,1) and MS(5,1) are placed together, middle switches MS(3,2) and MS(5,2) are placed together, and similarly middle switches MS(3,12) and MS(5, 12) are placed together. All the right going middle links {i.e., middle links ML(3,1)-ML(3,48) and middle links ML(4,1)-ML(4,48} correspond to middle switches MS(3,1)-MS(3,12, and all the left going middle links {i.e., middle links ML(5,

1)-ML(5,48 and middle links ML(6,1) and ML(6,48} correspond to middle switches MS(5,1)-MS(5,12).

Middle stage **160** is placed alone. All the right going middle links are the middle links ML(**4**,**1**)-ML(**4**,**8**), ML(**4**,**17**)-ML(**4**,**24**) and ML(**4**,**33**)-ML(**4**,**48**) and all the left going 5 middle links are middle links ML(**5**,**1**)-ML(**5**,**8**), ML(**5**,**17**)-ML(**5**,**24**) and ML(**5**,**33**)-ML(**5**,**48**).

In one embodiment, in the network 200B of FIG. 2B, the switches that are placed together are implemented as separate switches then the network 200B is the generalized folded multi link multi stage network $V_{\textit{fold-mlink}}(N_1, N_2, d, s)$ where $N_1=N_2=24$; d=2; and s=2 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,389 that is incorporated by reference above. That is the switches that are placed together in input stage 110 and output stage 120 are 15 implemented as a two by four switch and a four by two switch. For example the input switch IS1 and output switch OS1 are placed together; so input switch IS1 is implemented as two by four switch with the inlet links IL1 and IL2 being the inputs of the input switch IS1 and middle links ML(1.1)-ML(1.4) 20 being the outputs of the input switch IS1; and output switch OS1 is implemented as four by two switch with the middle links ML(8,1), ML(8,2), ML(8,7) and ML(8,8) being the inputs of the output switch OS1 and outlet links OL1-OL2 being the outputs of the output switch OS1. Similarly in this 25 embodiment of network 200B all the switches that are placed together in each middle stage are implemented as separate switches.

Modified-Hypercube Topology Layout Schemes:

Referring to layout 200C of FIG. 2C, in one embodiment, 30 there are twelve blocks namely Block 1 2, Block 3 4, Block 5_6, Block 7_8, Block 9_10, Block 11_12, Block 13_14, Block 15_16, Block 17_18, Block 19_20, Block 21_22, and Block 23 24. Each block implements all the switches in one row of the network 200B of FIG. 2B, one of the key aspects of 35 the current invention. For example Block 1_2 implements the input switch IS1, output Switch OS1, middle switch MS(1,1), middle switch MS(7,1), middle switch MS(2,1), middle switch MS(6,1), middle switch MS(3,1), middle switch MS(5,1), and middle switch MS(4,1). For the simplification 40 of illustration, Input switch IS1 and output switch OS1 together are denoted as switch 1; Middle switch MS(1,1) and middle switch MS(7,1) together are denoted by switch 2; Middle switch MS(2,1) and middle switch MS(6,1) together are denoted by switch 3; Middle switch MS(3,1) and middle 45 switch MS(5,1) together are denoted by switch 4; Middle switch MS(4.1) is denoted by switch 5.

All the straight middle links are illustrated in layout 200C of FIG. 2C. For example in Block 1_2, inlet links IL1-IL2, outlet links OL1-OL2, middle link ML(1,1), middle link 50 ML(1,2), middle link ML(8,1), middle link ML(8,2), middle link ML(2,1), middle link ML(2,2), middle link ML(7,1), middle link ML(7,2), middle link ML(3,1), middle link ML(3,2), middle link ML(6,1), middle link ML(6,2), middle link ML(4,1), middle link ML(4,2), middle link ML(5,1) and 55 middle link ML(5,2) are illustrated in layout 200C of FIG. 2C.

Even though it is not illustrated in layout **200**C of FIG. **2**C, in each block, in addition to the switches there may be Configurable Logic Blocks (CLB) or any arbitrary digital circuit 60 depending on the applications in different embodiments. There are a maximum of four quadrants in the layout **200**C of FIG. **2**C namely top-left, bottom-left, top-right and bottom-right quadrants. In each quadrant there are a maximum of four blocks. Top-left quadrant implements Block **1_2**, Block **3_4**, 65 Block **5_6**, and Block **7_8**. Bottom-left quadrant implements Block **9_10**, Block **11_12**, Block **13_14**, and Block **15_16**.

32

Top-right quadrant implements Block 17_18, Block 19_20. Bottom-right quadrant implements Block 21_22, and Block 23_24. There are two halves in layout 200C of FIG. 2C namely left-half and right-half. Left-half consists of top-left and bottom-left quadrants. Right-half consists of top-right and bottom-right quadrants.

Recursively in each quadrant there are a maximum of four sub-quadrants. For example in top-left quadrant there are four sub-quadrants namely top-left sub-quadrant, bottom-left subquadrant, top-right sub-quadrant and bottom-right sub-quadrant. Top-left sub-quadrant of top-left quadrant implements Block 1_2. Bottom-left sub-quadrant of top-left quadrant implements Block 3_4. Top-right sub-quadrant of top-left quadrant implements Block 5_6. Finally bottom-right subquadrant of top-left quadrant implements Block 7 8. Similarly there are a maximum of two sub-halves in each quadrant. For example in top-left quadrant there are two sub-halves namely left-sub-half and right-sub-half. Left-sub-half of topleft quadrant implements Block 1_2 and Block 3_4. Rightsub-half of top-left quadrant implements Block 5 6 and Block 7_8. Finally applicant notes that in each quadrant or half the blocks are arranged close to binary hypercube.

Layout 200D of FIG. 2D illustrates the inter-block links between switches 1 and 2 of each block. For example middle links ML(1,3), ML(1,4), ML(8,7), and ML(8,8) are connected between switch 1 of Block 1_2 and switch 2 of Block 3_4 . Similarly middle links ML(1,7), ML(1,8), ML(8,3), and ML(8,4) are connected between switch 2 of Block 12 and switch 1 of Block 3_4. Applicant notes that the inter-block links illustrated in layout 200D of FIG. 2D can be implemented as vertical tracks in one embodiment. Also in one embodiment inter-block links are implemented as two different tracks (for example middle links ML(1,4) and ML(8,8) are implemented as two different tracks); or in an alternative embodiment inter-block links are implemented as a time division multiplexed single track (for example middle links ML(1,4) and ML(8,8) are implemented as a time division multiplexed single track). As described before, the inter-link bandwidth provided between two physically adjacent blocks in the same column is hereinafter called 2's bandwidth or 2's BW. For example the inter-block links between switches 1 and 2 as illustrated in layout 200D of FIG. 2D is 2's BW.

Layout 200E of FIG. 2E illustrates the inter-block links between switches 2 and 3 of each block. For example middle links ML(2,3), ML(2,4), ML(7,11), and ML(7,12) are connected between switch 2 of Block 1_2 and switch 3 of Block **5_6**. Similarly middle links ML(**2**,**11**), ML(**2**,**12**), ML(**7**,**3**), and ML(7,4) are connected between switch 3 of Block 1_2 and switch 2 of Block 5_6. It muse be noted that if there are an odd number of blocks in the rows of blocks then one of the blocks do not need inter-block links between switches 2 and 3, and also one of the switches for example switch 3 does not need to be implemented. For example in layout 200E there are three blocks in the topmost row namely Block 1_2, Block 5_6 and Block 17_18. In layout 200E there is no need to have inter-block links between switches 2 and 3 of Block 17 18 and hence there is no need to implement switch 3. Similarly in Block 19 20, Block 21 22 and Block 23 24 there is no need to provide inter-block links between switches 2 and 3 in those blocks. Also switch 3 is not implemented in those blocks.

Applicant notes that the inter-block links illustrated in layout 200E of FIG. 2E can be implemented as horizontal tracks in one embodiment. Also in one embodiment inter-block links are implemented as two different tracks (for example middle links ML(2,12) and ML(7,4) are implemented as two different tracks); or in an alternative embodiment inter-block links are implemented as a time division

multiplexed single track (for example middle links ML(2,12) and ML(7,4) are implemented as a time division multiplexed single track).

In general the bandwidth offered within a quadrant or a partial quadrant of the layout formed by two nearest neighboring blocks is 2's BW. For example in layout **200**C of FIG.

2C the bandwidth offered in top-right quadrant is 2's BW. Similarly the bandwidth offered within each of the other three quadrants top-left, bottom-left and bottom-right quadrants is 2'BW. Alternatively the bandwidth offered with in a square or a partial square of blocks with the sides of the square consisting of two neighboring blocks is 2's BW. This definition can be generalized so that the bandwidth offered within a square of blocks with the sides consisting of "x" number of blocks, where 2^{y-1}≤x≤2^y where "y" is an integer, is hereinafter x's

Layout 200F of FIG. 2F illustrates the inter-block links between switches 3 and 4 of each block excepting that among the Block 17_18, Block 19_20, Block 21_22, and Block 20 23_24 the inter-block links are between the switches 2 and 4. For example middle links ML(3,3), ML(3,4), ML(6,19), and ML(6,20) are connected between switch 3 of Block 1_2 and switch 4 of Block 3_4. Similarly middle links ML(3,19), ML(3,20), ML(6,3), and ML(6,4) are connected between 25 switch 4 of Block 1_2 and switch 3 of Block 3_4. Applicant notes that the inter-block links illustrated in layout 200F of FIG. 2F can be implemented as vertical tracks in one embodiment. Also in one embodiment inter-block links are implemented as two different tracks (for example middle links ML(3,4) and ML(6,20) are implemented as two different tracks); or in an alternative embodiment inter-block links are implemented as a time division multiplexed single track (for example middle links ML(3,4) and ML(6,20) are implemented as a time division multiplexed single track). For example the inter-block links between switches 3 and 4 as illustrated in layout 200F of FIG. 2F is 4's BW.

Layout 200G of FIG. 2G illustrates the inter-block links between switches 4 and 5 of each block. For example middle 40 links ML(4.3), ML(4.4), ML(5.35), and ML(5.36) are connected between switch 4 of Block 1_2 and switch 5 of Block 3_4. Similarly middle links ML(4,35), ML(4,36), ML(5,3), and ML(5,4) are connected between switch 5 of Block 1_2 and switch 4 of Block 3_4. It muse be noted that if the number 45 of blocks in the rows of blocks is not a perfect multiple of four, then some of the blocks do not need inter-block links between switches 4 and 5, and also one of the switches for example switch 5 does not need to be implemented. For example in layout 200G there are three blocks in the topmost row namely 50 Block 1_2, Block 5_6 and Block 17_18. In layout 200E there is no need to have inter-block links between switches 4 and 5 of Block **5_6** and hence there is no need to implement switch 5. Similarly in Block 7_8, Block 13_14 and Block 15_16 there is no need to provide inter-block links between switches 55 4 and 5 in those blocks. Also switch 5 is not implemented in

Applicant notes that the inter-block links illustrated in layout 200G of FIG. 2G can be implemented as horizontal tracks in one embodiment. Also in one embodiment inter-block links are implemented as two different tracks (for example middle links ML(4,4) and ML(5,36) are implemented as two different tracks); or in an alternative embodiment inter-block links are implemented as a time division multiplexed single track (for example middle links ML(4,4) 65 and ML(5,36) are implemented as a time division multiplexed single track). The bandwidth offered between top-left quad-

34

rant, bottom-left quadrant, top-right partial quadrant and bottom-right partial quadrant is 4's BW in layout 200G of FIG. 2G

The complete layout for the network 200B of FIG. 2B is given by combining the links in layout diagrams of 200C, 200D, 200E, 200F, and 200G. Applicant notes that in the layout 200C of FIG. 2C, the inter-block links between switch 1 and switch 2 of corresponding blocks are vertical tracks as shown in layout 200D of FIG. 2D; the inter-block links between switch 2 and switch 3 of corresponding blocks are horizontal tracks as shown in layout 200E of FIG. 2E; the inter-block links between switch 3 and switch 4 of corresponding blocks are vertical tracks as shown in layout 200F of FIG. 2F; and finally the inter-block links between switch 4 and switch 5 of corresponding blocks are horizontal tracks as shown in layout 200G of FIG. 2G. The pattern is alternate vertical tracks and horizontal tracks.

Some of the key aspects of the current invention are discussed. 1) All the switches in one row of the multi-stage network 200B are implemented in a single block. 2) The blocks are placed in such a way that all the inter-block links are either horizontal tracks or vertical tracks; 3) Since all the inter-block links are either horizontal or vertical tracks, all the inter-block links can be mapped on to island-style architectures in current commercial FPGAs; 4) The length of the longest wire is about half of the width (or length) of the complete layout (For example middle link ML(4,4) is about half the width of the complete layout).

In accordance with the current invention, the layout 200C in FIG. 2C can be recursively extended for any arbitrarily large generalized folded multi-link multi-stage network $V_{fold-mlink}(N_1, N_2, d, s)$ the sub-quadrants, quadrants, and super-quadrants are arranged in d-ary hypercube manner and also the inter-blocks are accordingly connected in d-ary hypercube topology. Even though all the embodiments in the current invention are illustrated for $N_1 = N_2$ when $N_1 = N_2 \neq 2^x$ where x is an integer, the embodiments can be extended for $N_1 \neq 2^x \& N_2 \neq 2^y$ where x and y are integers.

Just the same as was illustrated in diagram 100I of FIG. 1I for a high-level implementation of Block 1_2 (Each of the other blocks have similar implementation) of the layout 100C of FIG. 1C which represents a generalized folded multi-link multi-stage network $V_{fold-mlink}(N_1,\ N_2,\ d,\ s)$ where $N_1=N_2=32;\ d=2;$ and $s=2,\ a$ high-level implementation of Block 1_2 of the layout 200C of FIG. 2C which represents a generalized folded multi-link multi-stage network $V_{fold-mlink}(N_1,\ N_2,\ d,\ s)$ where $N_1=N_2=24;\ d=2;$ and s=2 is similar.

Just the same as was illustrated in diagram 100J of FIG. 1J for a high-level implementation of Block 1_2 (Each of the other blocks have similar implementation) of the layout 100C of FIG. 1C which represents a generalized multi-link butterfly fat tree network $V_{mlink-bfi}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=2, a high-level implementation of Block 1_2 of the layout 200C of FIG. 2C which represents a generalized multi-link butterfly fat tree network $V_{mlink-bfi}(N_1, N_2, d, s)$ where $N_1=N_2=24$; d=2; and s=2 is similar.

Just the same as was illustrated in diagram 100K of FIG. 1K for a high-level implementation of Block 1_2 (Each of the other blocks have similar implementation) of the layout 100C of FIG. 1C which represents a generalized folded multi-stage network $V_{fold}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d = 2; and s = 2, a high-level implementation of Block 1_2 of the layout 200C of FIG. 2C which represents a generalized folded multi-stage network $V_{fold}(N_1, N_2, d, s)$ where $N_1 = N_2 = 24$; d = 2; and s = 2 is similar.

Just the same as was illustrated in diagram 100K1 of FIG. 1K1 for a high-level implementation of Block 1_2 (Each of

the other blocks have similar implementation) of the layout $\bf 100C$ of FIG. 1C which represents a generalized folded multistage network $V_{fold}(N_1,N_2,d,s)$ where $N_1{=}N_2{=}32;$ d=2; and s=1, a high-level implementation of Block $\bf 1{_}2$ of the layout $\bf 200C$ of FIG. 2C which represents a generalized folded multistage network $V_{fold}(N_1,N_2,d,s)$ where $N_1{=}N_2{=}24;$ d=2; and s=1 is similar.

35

Just the same as was illustrated in diagram 100L of FIG. 1L for a high-level implementation of Block 1_2 (Each of the other blocks have similar implementation) of the layout 100C $\,^{10}$ of FIG. 1C which represents a generalized butterfly fat tree network V $_{bf}(N_1,N_2,d,s)$ where $N_1{=}N_2{=}32;$ d=2; and s=2, a high-level implementation of Block 1_2 of the layout 200C of FIG. 2C which represents a generalized butterfly fat tree network V $_{bf}(N_1,N_2,d,s)$ where $N_1{=}N_2{=}24;$ d=2; and s=2 is 15 similar.

Just the same as was illustrated in diagram 100L1 of FIG. 1L1 for a high-level implementation of Block 1_2 (Each of the other blocks have similar implementation) of the layout 100C of FIG. 1C which represents a generalized butterfly fat 20 tree network $V_{b\hat{p}\hat{t}}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d=2; and s=1, a high-level implementation of Block 1_2 of the layout 200C of FIG. 2C which represents a generalized butterfly fat tree network $V_{b\hat{p}\hat{t}}(N_1, N_2, d, s)$ where $N_1 = N_2 = 24$; d=2; and s=1 is similar.

Modified-Hypercube Topology with Nearest Neighbor Connectivity First and the Remaining with Equal Length Wires, in Every Stage:

Referring to layout 300A of FIG. 3A, 300B of FIGS. 3B and 300C of FIG. 3C illustrate the topmost row of the extension of layout 100H for the network $V_{fold-mlink}(N_1, N_2, d, s)$ where $N_1=N_2=512$; d=2; and s=2. In one embodiment of the complete layout, not shown in FIGS. 3A-3C, there are four super-super-quadrants namely top-left super-super-quadrant, bottom-left super-super-quadrant, top-right super-super- 35 quadrant, and bottom-right super-super-quadrant. Total number of blocks in the complete layout is two hundred and fifty six. Top-left super-super-quadrant implements the blocks from block 1_2 to block 1_27_128. Bottom-left super-superquadrant implements the blocks from block 129_130 to block 40 255_256. Top-right super-super-quadrant implements the blocks from block 257_258 to block 319_320. Bottom-right super-super-quadrant implements the blocks from block 383_384 to block 511_512. Each block in all the super-superquadrants has two more switches namely switch 8 and switch 45 9 in addition to the switches [1-7] described in layout 100H of FIG. 1H.

The embodiment of layout 300A of FIG. 3A illustrates the 2's BW provided in the top-most row of the complete layout namely between block 1_2 and block 5_6; between block 50 17_18 and block 21_22; between block 65_66 and block 69_90; between block 81_82 and block 85_86; between block 257_258 and block 261_262; between block 273_274 and block 275_276; between block 321_322 and block 325_326; and between block 337_338 and block 3_41_342. 55 In one embodiment, the 2's BW provided between the respective blocks is through the inter-block links between corresponding switch 2 and switch 3 of the respective blocks.

The embodiment of layout 300B of FIG. 3B illustrates the 4's BW provided in the top-most row of the complete layout 60 namely between block 1_2 and block 21_22; between block 5_6 and block 17_18; between block 65_66 and block 85_86; between block 69_70 and block 81_82; between block 257_258 and block 275_276; between block 261_262 and block 273_274; between block 321_322 and block 341_342; 65 and between block 325_326 and block 337_338. In one embodiment, the 4's BW provided between the respective

blocks is through the inter-block links between corresponding switch 4 and switch 5 of the respective blocks. In layout 300B, nearest neighbor blocks are connected together to provide 4's BW (for example the 4's BW provided between block 5_6 and block 17_18) and then the rest of the blocks are connected to provide the 4's BW (for example the 4's BW provided between block 1_2 and block 21_22).

36

The embodiment of layout 300C of FIG. 3C illustrates the 8's BW provided in the top-most row of the complete layout namely between block 1_2 and block 69_70; between block 5 6 and block 81 82; between block 17 18 and block 85 86; between block 21_22 and block 65_66; between block 257_258 and block 325_326; between block 261_262 and block 337_338; between block 273_274 and block 341_342; and between block 275 276 and block 321 322. In one embodiment, the 8's BW provided between the respective blocks is through the inter-block links between corresponding switch 6 and switch 7 of the respective blocks. In layout 300C, nearest neighbor blocks are connected together to provide 8's BW (for example the 8's BW provided between block 21_22 and block 65_66) and then the rest of the blocks are connected to provide the 8's BW (for example the 8's BW provided between block 1_2 and block 69_70).

Modified-Hypercube Topology with Recursive Nearest Neighbor Connectivity, in Every Stage:

In another embodiment of the extension of layout 100H for the network $V_{fold-mlink}(N_1, N_2, d, s)$ where $N_1=N_2=512$; d=2; and s=2, the 2's BW and 4's BW are provided exactly the same as illustrated in FIG. 3A and FIG. 3B respectively; However 8's BW is offered as illustrated in layout 300D of FIG. 3D. The 8's BW is provided in the top-most row of the complete layout namely between block 21_22 and block 65_66; between block 17_18 and block 69_70; between block 5_6 and block 81_82; between block 1_2 and block 85_86; between block 275_276 and block 321_322; between block 273_274 and block 325_326; between block 261_262 and block 337_338; and between block 257_258 and block 341_342. In one embodiment, the 8's BW provided between the respective blocks is through the inter-block links between corresponding switch 6 and switch 7 of the respective blocks.

In layout 300D, nearest neighbor blocks are connected together to provide 8's BW recursively. Specifically first the 8's BW is provided between block 21_22 and block 65_66. Then the 8's BW is provided between the nearest neighbor blocks in the remaining blocks, i.e., between block 17_18 and block 69_70. Then the 8's BW is provided between the nearest neighbor blocks in the remaining blocks, i.e., between block 5_6 and block 81_82. Finally the 8's BW is provided between the nearest neighbor blocks in the remaining blocks, i.e., between block 1_2 and block 85_86. In the same manner, the 8's BW is provided in the remaining blocks between block 257_258 up to block 341_342.

Modified-Hypercube Topology with the Second Stage Implementing Nearest Neighbor Connectivity:

Referring to layout 400A of FIG. 4A, 400B of FIGS. 4B and 400C of FIG. 4C illustrate the topmost row of the extension of layout 100H for the network $V_{fold-mlink}(N_1, N_2, d, s)$ where $N_1 = N_2 = 512$; d = 2; and s = 2. In another embodiment of the complete layout, not shown in FIGS. 4A-4C, there are four super-super-quadrants namely top-left super-super-quadrant, bottom-left super-super-quadrant, top-right super-super-quadrant, and bottom-right super-super-quadrant. Total number of blocks in the complete layout is two hundred fifty six. Top-left super-super-quadrant implements the blocks from block 1_2 to block 1_27_128. Bottom-left super-super-quadrant implements the blocks from block 129_130 to block 255_256. Top-right super-super-quadrant implements

the blocks from block 257_258 to block 319_320. Bottomright super-super-quadrant implements the blocks from block 383_384 to block 511_512. Each block in all the super-super-quadrants has two more switches namely switch 8 and switch 9 in addition to the switches [1-7] described in layout 100H of 5 FIG. 1H.

In the embodiment of Layout 400A of FIG. 4A illustrates the 2's BW provided in the top-most row of the complete layout namely between block 1_2 and block 5_6; between block 17_18 and block 21_22; between block 65_66 and block 69_90; between block 81_82 and block 85_86; between block 257_258 and block 261_262; between block 273_274 and block 275_276; between block 321_322 and block 325_326; and between block 337_338 and block 3_41_342. In one embodiment, the 2's BW provided between the respective blocks is through the inter-block links between corresponding switch 2 and switch 3 of the respective blocks. Applicant notes that in layout 400A of FIG. 4A the first stage provides 2's BW between the blocks in the top-most row of the complete layout.

In the embodiment of Layout 400B of FIG. 4B illustrates the nearest neighbor connectivity between blocks of the topmost row of the complete layout to provide 4's BW, 8's BW, and 16's BW namely between block 5 6 and block 17 18 the 25 bandwidth provided is 4's BW; between block 21_22 and block 65_66 the bandwidth provided is 8's BW; between block 69 70 and block 81 82 the bandwidth provided is 4's BW; between block 85 86 and block 257 258 the bandwidth provided is 16's BW; between block 261_262 and block 30 273 274 the bandwidth provided is 4's BW; between block 275_276 and block 321_322 the bandwidth provided is 8's BW; between block 325_326 and block 337_338 the bandwidth provided is 4's BW; and between block 1 2 and block 341_342 no bandwidth is provided. (Even though it is not 35 illustrated, in another embodiment 16's BW can be provided between block 1 2 and block 342 342). In one embodiment, the BW provided between the respective blocks is through the inter-block links between corresponding switch 4 and switch 5 of the respective blocks. Applicant notes that in layout 400B 40 of FIG. 4B the second stage provides the remaining nearest neighbor connectivity (i.e., after the first stage connectivity in layout 400A of FIG. 4A as illustrated provides nearest neighbor connectivity with 100% 2's BW) namely 50% of 4's BW, 25% of 8's BW and 12.5% of 16's BW, between the blocks in 45 the top-most row of the complete layout.

The embodiment of layout 400C of FIG. 4C illustrates the 4's BW and 8's BW provided in the top-most row of the complete layout namely between block 1_2 and block 21_22 the bandwidth provided is 4's BW; between block 5_6 and 50 block 69_70 the bandwidth provided is 8's BW; between block 17 18 and block 81 82 the bandwidth provided is 8's BW; between block 65_66 and block 85_86 the bandwidth provided is 4's BW; between block 257_258 and block 275_276 the bandwidth provided is 4's BW; between block 55 261 262 and block 325 326 the bandwidth provided is 8's BW; between block 273_274 and block 341_342 the bandwidth provided is 4's BW; between block 275 276 and block 337_338 the bandwidth provided is 8's BW; and between block 321_322 and block 3_41_342 the bandwidth provided 60 is 4's BW. In one embodiment, the 4's BW and 8's BW provided between the respective blocks is through the interblock links between corresponding switch 6 and switch 7 of the respective blocks. Applicant notes that in layout 400C of FIG. 4C the third stage provides 50% of 4's BW and 50% of 65 8's BW between the blocks in the top-most row of the complete layout.

38

The same process is repeated in the fourth stage by providing namely 25% of 8's BW and 87.5% of 16's BW is provided. This connectivity topology can be similarly extended to the network $V_{fold\text{-}mlink}(N_1, N_2, d, s)$ where N_1 = N_2 >512; d=2; and s=2.

Modified-Hypercube Topology with Partial & Tapered Connectivity (Bandwidth) in a Stage, where $N_1=N_2=512$:

Referring to layout 500 of FIG. 5 illustrates the topmost row of the extension of layout 100H for the network $V_{\it fold-mlink}(N_1, N_2, d, s)$ where $N_1 = N_2 = 512; d = 2;$ and s = 2. In another embodiment of the complete layout, not shown in FIG. 5, there are four super-super-quadrants namely top-left super-super-quadrant, bottom-left super-super-quadrant, topright super-super-quadrant, and bottom-right super-superquadrant. Total number of blocks in the complete layout is two hundred fifty six. Top-left super-super-quadrant implements the blocks from block 1_2 to block 1_27_128. Bottomleft super-super-quadrant implements the blocks from block 129_130 to block 255_256. Top-right super-super-quadrant implements the blocks from block 257 258 to block 319_320. Bottom-right super-super-quadrant implements the blocks from block 383_384 to block 511_512. Each block in all the super-super-quadrants has two more switches namely switch 8 and switch 9 in addition to the switches [1-7] described in layout 100H of FIG. 1H.

The embodiment of layout 500 of FIG. 5 illustrates the 8's BW and 16's BW provided in the top-most row of the complete layout namely between block 21_22 and block 65_66 the bandwidth provided is 8's BW; between block 17 18 and block 69_70 the bandwidth provided is 8's BW; between block 85_86 and block 257_258 the bandwidth provided is 16's BW; between block 81_82 and block 261_262 the bandwidth provided is 16's BW; between block 275_276 and block 321_322 the bandwidth provided is 8's BW; between block 273_274 and block 325_326 the bandwidth provided is 8's BW. In one embodiment, the 8's BW and 16's BW provided between the respective blocks is through the inter-block links between corresponding switch 6 and switch 7 of the respective blocks. Applicant notes that in layout 500 of FIG. 5 the bandwidth provided between the blocks in the top-most row of the complete layout may be in anyone of the stages. Applicant observes that the 8's bandwidth provided in layout 500 of FIG. 5 is 50% of total 8's BW for full connectivity and 16's BW provided is 25% of the total 16's BW for full connectivity. In layout 500 of FIG. 5, the partial 8's BW and 16's BW is provided in nearest neighbor connectivity manner recursively which makes the wire lengths between different blocks to offer 8's BW is different and also makes the wire lengths between different blocks to offer 16's BW is different. Layout 500 of FIG. 5 illustrates an embodiment to provide partial bandwidth in a tapered manner, where it is not needed to provide the complete bandwidth in the higher stages. Modified-Hypercube Topology with Partial & Tapered Connectivity (Bandwidth) in a Stage, where N₁=N₂=2048:

Referring to layout **600** of FIG. **6** illustrates the topmost row of the extension of layout **100**H for the network $V_{fold-mlink}(N_1, N_2, d, s)$ where $N_1 = N_2 = 2048$; d=2; and s=2. In one embodiment of the complete layout, not shown in FIG. **6**, there are four super-super-quadrants namely top-left super-super-super-quadrant, top-right super-super-quadrant, and bottom-right super-super-super-quadrant. Total number of blocks in the complete layout is one thousand and twenty four. Top-left super-super-quadrant implements the blocks from block **1_2** to block **511_512**. Bottom-left super-super-quadrant implements the blocks from block **513_514** to block **1023_1024**. Top-right super-super-quadrant implements the blocks from

block 1025_1026 to block 1535_1536. Bottom-right supersuper-quadrant implements the blocks from block 1537_1538 to block 2047_2048. Each block in all the supersuper-quadrants has four more switches namely switch 8, switch 9, switch 10 and switch 11 in addition to the switches [1-7] described in layout 100H of FIG. 1H.

In the embodiment of Layout 600 of FIG. 6 illustrates the 8's BW, 16's BW and 32's BW provided in the top-most row of the complete layout namely between block 2122 and block 65_66 the bandwidth provided is 8's BW; between block 17 18 and block 69 70 the bandwidth provided is 8's BW; between block 85_86 and block 257_258 the bandwidth provided is 16's BW; between block 81_82 and block 261_262 the bandwidth provided is 16's BW; between block 275_276 and block 321 322 the bandwidth provided is 8's BW; between block 273_274 and block 325_326 the bandwidth provided is 8's BW; between block 3_41_342 and block 1025_1026 the bandwidth provided is 32's BW; between block 337_338 and block 1029_1030 the bandwidth provided is 32's BW; between block 1045 1046 and block 1089 1090 20 the bandwidth provided is 8's BW; between block 1041_1042 and block 1093_1094 the bandwidth provided is 8's BW; between block 1109_1110 and block 1281_1282 the bandwidth provided is 16's BW; between block 1105_1106 and block 1285 1286 the bandwidth provided is 16's BW; 25 between block 1299_1300 and block 1345_1346 the bandwidth provided is 8's BW; and between block 1297_1298 and block 1349_1350 the bandwidth provided is 8's BW.

In one embodiment, the 8's BW, 16's BW, and 32's BW provided between the respective blocks is through the interblock links between corresponding switch 10 and switch 11 of the respective blocks. Applicant notes that in layout 600 of FIG. 6 the bandwidth provided between the blocks in the top-most row of the complete layout may be in anyone of the stages. Applicant observes that the 8's bandwidth provided in 35 layout 500 of FIG. 5 is 50% of total 8's BW for full connectivity, 16's BW provided is 25% of the total 16's BW for full connectivity and 32's BW provided is 12.5% of the total 32's BW for full connectivity.

Applicant notes that in layout **600** of FIG. **6** the length of some of the wires providing bandwidth to 8's BW, 16's BW and 32's BW are of equal size, and the length of rest of the wires providing bandwidth to 8's BW, 16's BW and 32's BW are of equal size. In layout **600** of FIG. **6**, the partial 8's BW, 16's BW and 32's BW is provided in nearest neighbor connectivity manner recursively which makes the wire lengths between different blocks to offer 8's BW is different, also makes the wire lengths between different blocks to offer 16's BW is different and also makes the wire lengths between different blocks to offer 32's BW is different. Layout **600** of FIG. **6** illustrates an embodiment to provide partial bandwidth in a tapered manner, where it is not needed to provide the complete bandwidth in the higher stages.

Modified-Hypercube Topology with Partial & Tapered Connectivity (Bandwidth) with Equal Length Wires, in a Stage: 55

Referring to layout **700** of FIG. **7** illustrates the topmost row of the extension of layout **100**H for the network $V_{fold-mlink}(N_1, N_2, d, s)$ where $N_1 = N_2 = 2048$; d=2; and s=2. In another embodiment of the complete layout, not shown in FIG. **7**, there are four super-super-quadrants namely 60 top-left super-super-quadrant, bottom-left super-super-super-quadrant, top-right super-super-quadrant, and bottom-right super-super-quadrant. Total number of blocks in the complete layout is one thousand and twenty four. Top-left super-super-quadrant implements the blocks 65 from block **1_2** to block **511_512**. Bottom-left super-super-quadrant implements the block **513_514** to block

1023_1024. Top-right super-super-quadrant implements the blocks from block 1025_1026 to block 1535_1536. Bottom-right super-super-quadrant implements the blocks from block 1537_1538 to block 2047_2048. Each block in all the super-super-quadrants has four more switches namely switch 8, switch 9, switch 10 and switch 11 in addition to the switches [1-7] described in layout 100H of FIG. 1H.

In the embodiment of Layout 700 of FIG. 7 illustrates the 8's BW, 16's BW and 32's BW provided in the top-most row of the complete layout namely between block 21_22 and block 69_70 the bandwidth provided is 8's BW; between block 17_18 and block 65_66 the bandwidth provided is 8's BW; between block 85_86 and block 261_262 the bandwidth provided is 16's BW; between block 81_82 and block 257 258 the bandwidth provided is 16's BW; between block 275_276 and block 325_326 the bandwidth provided is 8's BW; between block 273_274 and block 321_322 the bandwidth provided is 8's BW; between block 3_41_342 and block 1029_1030 the bandwidth provided is 32's BW; between block 337 338 and block 1025 1026 the bandwidth provided is 32's BW; between block 1045_1046 and block 1093_1094 the bandwidth provided is 8's BW; between block 1041_1042 and block 1089_1090 the bandwidth provided is 8's BW; between block 1109_1110 and block 1_285_1286 the bandwidth provided is 16's BW; between block 1105_1106 and block 1_281_1282 the bandwidth provided is 16's BW; between block 1299_1300 and block 1349_1350 the bandwidth provided is 8's BW; and between block 1297_1298 and block 1345_1346 the bandwidth provided is 8's BW.

In one embodiment, the 8's BW, 16's BW, and 32's BW provided between the respective blocks is through the interblock links between corresponding switch 10 and switch 11 of the respective blocks. Applicant notes that in layout 700 of FIG. 7 the bandwidth provided between the blocks in the top-most row of the complete layout may be in anyone of the stages. Applicant observes that the 8's bandwidth provided in layout 500 of FIG. 5 is 50% of total 8's BW for full connectivity, 16's BW provided is 25% of the total 16's BW for full connectivity and 32's BW provided is 12.5% of the total 32's BW for full connectivity. Applicant notes that in layout 700 of FIG. 7 the length of the wires providing bandwidth to 8's BW, 16's BW and 32's BW are all of equal size. Layout 700 of FIG. 7 illustrates another embodiment to provide partial bandwidth in a tapered manner, where it is not needed to provide the complete bandwidth in the higher stages.

All the layout embodiments disclosed in the current invention are applicable to generalized multi-stage networks $V(N_1, N_2, d, s)$, generalized folded multi-stage networks $V_{fold}(N_1, N_2, d, s)$, generalized butterfly fat tree networks $V_{bfl}(N_1, N_2, d, s)$, generalized multi-link multi-stage networks $V_{mlink}(N_1, N_2, d, s)$, generalized folded multi-link multi-stage networks $V_{fold-mlink}(N_1, N_2, d, s)$, generalized multi-link butterfly fat tree networks $V_{mlink-bfl}(N_1, N_2, d, s)$ and generalized hypercube networks $V_{hcube}(N_1, N_2, d, s)$ for s=1, 2, 3 or any number in general, and for $N_1=N_2=N$ or $N_1\neq N_2$, or $N_1\neq 2^x$ & $N_2\neq 2^y$ where x, y and d are integers.

Conversely applicant makes another important observation that generalized hypercube networks $V_{hcube}(N_1, N_2, d, s)$ are implemented with the layout topology being the hypercube topology shown in layout 100C of FIG. 1C with large scale cross point reduction as any one of the networks described in the current invention namely: generalized multi-stage networks $V(N_1, N_2, d, s)$, generalized folded multi-stage networks $V_{fold}(N_1, N_2, d, s)$, generalized butterfly fat tree networks $V_{bft}(N_1, N_2, d, s)$, generalized multi-link multi-stage networks $V_{mlink}(N_1, N_2, d, s)$, generalized folded multi-link

multi-stage networks $V_{\textit{fold-mlink}}(N_1,\ N_2,\ d,\ s)$, generalized multi-link butterfly fat tree networks $V_{\textit{mlink-bfi}}(N_1,\ N_2,\ d,\ s)$ for s=1, 2, 3 or any number in general, and for $N_1=N_2=N$ or $N_1 \neq N_2$, or $N_1 \neq 2^x \& N_2 \neq 2^y$ where x, y and d are integers. Symmetric RNB Generalized Multi-Link Multi-Stage Pyra- 5 mid Network $V_{mlink-p}(N_1, N_2, d, s)$, Connection Topology: Nearest Neighbor Connectivity and with More than Full Bandwidth:

Referring to diagram 800A in FIG. 8A, in one embodiment, an exemplary generalized multi-link multi-stage pyramid $V_{mlink-p}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=2 with nine stages of one hundred and forty four switches for satisfying communication requests, such as setting up a telephone call or a data call, or a connection between configurable logic blocks, between an input stage 110 and output 15 stage 120 via middle stages 130, 140, 150, 160, 170, 180 and 190 is shown where input stage 110 consists of sixteen switches with ten of two by four switches namely IS1, IS3, IS5, IS6, IS8, IS9, IS11, IS13, IS14, and IS16; and six of two by six switches namely IS2, IS4, IS7, IS10, IS12 and ISIS.

The output stage 120 consists of sixteen switches with ten of four by two switches namely OS1, OS3, OS5, OS6, OS8, OS9, OS11, OS13, OS14, and OS16; and six of six by two switches namely OS2, OS4, OS7, OS10, OS12, and OS15.

The middle stage 130 consists of sixteen switches with four 25 of four by four switches namely MS(1,1), MS(1,6), MS(1, 11), and MS(1,16); four of six by four switches namely MS(1,16)2), MS(1,5), MS(1,12) and MS(1,15); four of four by six switches namely MS(1,3), MS(1,8), MS(1,9), and MS(1,14); and four of six by six switches namely MS(1,4), MS(1,7), 30 MS(1,10), and MS(1,13).

The middle stage 190 consists of sixteen switches with four of four by four switches namely MS(7,1), MS(7,6), MS(7, 11), and MS(7,16); four of four by six switches namely MS(7, 2), MS(7,5), MS(7,12) and MS(7,15); four of six by four 35 switches namely MS(7,3), MS(7,8), MS(7,9), and MS(7,14); and four of six by six switches namely MS(7,4), MS(7,7), MS(7,10), and MS(7,13).

The middle stage 140 consists of sixteen switches with MS(2,5), MS(2,6), MS(2,11), MS(2,12), MS(2,15), and MS(2,16); and eight of six by four switches namely MS(2,3), MS(2,4), MS(2,7), MS(2,8), MS(2,9), MS(2,10), MS(2,13), and MS(2,14).

The middle stage 180 consists of sixteen switches with 45 eight of four by four switches namely MS(6,1), MS(6,2), MS(6,5), MS(6,6), MS(6,11), MS(6,12), MS(6,15), and MS(6,16); and eight of four by six switches namely MS(6,3), MS(6,4), MS(6,7), MS(6,8), MS(6,9), MS(6,10), MS(6,13), and MS(6,14).

And all the remaining middle stages namely the middle stage 150 consists of sixteen, four by four switches MS(3,1)-MS(3,16), middle stage 160 consists of sixteen, four by four switches MS(4,1)-MS(4,16), and middle stage 170 consists of sixteen, four by four switches MS(5,1)-MS(5,16).

The multi-link multi-stage pyramid network $V_{mlink-p}(N_1,$ N_2 , d, s) where $N_1=N_2=32$; d=2; and s=2 shown in diagram 800A of FIG. 8A is built on top of the generalized multi-link multi-stage network $V_{mlink}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=2 by adding a few more links.

Since as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,389 that is incorporated by reference above, a network V_{mlink}(N₁, N₂, d, s) can be operated in rearrangeably non-blocking manner for arbitrary fan-out multicast connections and also can be operated in strictly non-blocking manner for unicast connections, the network $V_{\mathit{mlink-p}}(N_1, N_2,$ d, s) can be operated in rearrangeably non-blocking manner

42

for arbitrary fan-out multicast connections and also can be operated in strictly non-blocking manner for unicast connec-

In one embodiment of this network each of the input switches IS1-IS16 and output switches OS1-OS16 are crossbar switches. The number of switches of input stage 110 and of output stage 120 can be denoted in general with the variable N/d, where N is the total number of inlet links or outlet links. The number of middle switches in each middle stage is denoted by N/d. The size of each input switch IS1-IS16 can be denoted in general with the notation d^{+*}(2d)⁺ (hereinafter d⁺ means d or more; or equivalently ≥d) and each output switch OS1-OS16 can be denoted in general with the notation (2d)+*d+. Likewise, the size of each switch in any of the middle stages can be denoted as $(2d)^{+*}(2d)^{+}$. A switch as used herein can be either a crossbar switch, or a network of switches each of which in turn may be a crossbar switch or a network of switches. A symmetric multi-stage network can be represented with the notation $V_{mlink-p}(N, d, s)$, where N represents the total number of inlet links of all input switches (for example the links IL1-IL32), d represents the inlet links of each input switch or outlet links of each output switch, and s is the ratio of number of outgoing links from each input switch to the inlet links of each input switch.

Each of the N/d input switches IS1-IS16 are connected to d⁺ switches in middle stage 130 through two links each for a total of (2×d)⁺ links (for example input switch IS2 is connected to middle switch MS(1,2) through the links ML(1,5), ML(1,6), and also connected to middle switch MS(1,1)through the links ML(1,7) and ML(1,8); In addition input switch IS2 is also connected to middle switch MS(1,5) through the links ML(1p,7) and ML(1p,8). The links ML(1,5), ML(1,6), ML(1,7) and ML(1,8) correspond to multistage network configuration and the links ML(1p,7) and ML(1p,8)correspond to the pyramid network configuration. Hereinafter all the pyramid links are denoted by ML(xp,y) where 'x' represents the stage the link belongs to and 'y' the link number in that stage.)

The middle links which connect switches in the same row eight of four by four switches namely MS(2,1), MS(2,2), 40 in two successive middle stages are called hereinafter straight middle links; and the middle links which connect switches in different rows in two successive middle stages are called hereinafter cross middle links. For example, the middle links ML(1,1) and ML(1,2) connect input switch IS1 and middle switch MS(1,1), so middle links ML(1,1) and ML(1,2) are straight middle links; where as the middle links ML(1,3) and ML(1.4) connect input switch IS1 and middle switch MS(1. 2), since input switch IS1 and middle switch MS(1,2) belong to two different rows in diagram 800A of FIG. 8A, middle links ML(1,3) and ML(1,4) are cross middle links. It can be seen that pyramid links such as ML(1p,7) and ML(1p,8) are also cross middle links.

Each of the N/d middle switches MS(1,1)-MS(1,16) in the middle stage 130 are connected from d+ input switches through two links each for a total of (2×d)+0 links (for example the links ML(1,1) and ML(1,2) are connected to the middle switch MS(1,1) from input switch IS1, and the links ML(1,7) and ML(1,8) are connected to the middle switch MS(1,1) from input switch IS2) and also are connected to d⁺ switches in middle stage 140 through two links each for a total of $(2\times d)^+$ links (for example the links ML(2,9) and ML(2,10) are connected from middle switch MS(1,3) to middle switch MS(2,3), and the links ML(2,11) and ML(2,12) are connected from middle switch MS(1,3) to middle switch MS(2,1); In addition middle switch MS(1,3) is also connected to middle switch MS(2,9) through the links ML(2p,11) and ML(2p,12). The links ML(2,9), ML(2,10), ML(2,11) and ML(2,12) cor-

respond to multistage network configuration and the links ML(2p,11) and ML(2p,12) correspond to the pyramid network configuration.)

Each of the N/d middle switches MS(2,1)-MS(2,16) in the middle stage 140 are connected from d+ input switches through two links each for a total of $(2\times d)^+$ links (for example the links ML(2,1) and ML(2,2) are connected to the middle switch MS(2,1) from input switch MS(1,1), and the links ML(1,11) and ML(1,12) are connected to the middle switch MS(2,1) from input switch MS(1,3)) and also are connected to d+ switches in middle stage 150 through two links each for a total of $(2\times d)^+$ links (for example the links ML(3,1) and ML(3,2) are connected from middle switch MS(2,1) to middle switch MS(3,1), and the links ML(3,3) and ML(3,4)are connected from middle switch MS(2,1) to middle switch 15 MS(3,6)).

Each of the N/d middle switches MS(3,1)-MS(3,16) in the middle stage 150 are connected from d+ input switches through two links each for a total of $(2\times d)^+$ links (for example the links ML(3.1) and ML(3.2) are connected to the middle 20 switch MS(3,1) from input switch MS(2,1), and the links ML(2,23) and ML(2,24) are connected to the middle switch MS(3,1) from input switch MS(2,6)) and also are connected to d+ switches in middle stage 160 through two links each for a total of $(2\times d)^+$ links (for example the links ML(4,1) and 25 ML(4,2) are connected from middle switch MS(3,1) to middle switch MS(4,1), and the links ML(4,3) and ML(4,4)are connected from middle switch MS(3,1) to middle switch MS(4,11)).

Each of the N/d middle switches MS(4,1)-MS(4,16) in the 30 middle stage 160 are connected from d⁺ input switches through two links each for a total of $(2\times d)^+$ links (for example the links ML(4,1) and ML(4,2) are connected to the middle switch MS(4,1) from input switch MS(3,1), and the links ML(4,43) and ML(4,44) are connected to the middle switch 35 MS(4,1) from input switch MS(3,11)) and also are connected to d+ switches in middle stage 170 through two links each for a total of $(2\times d)^+$ links (for example the links ML(5,1) and ML(5,2) are connected from middle switch MS(4,1) to middle switch MS(5,1), and the links ML(5,3) and ML(5,4) 40 a fully connected multi-stage network configuration the pyraare connected from middle switch MS(4,1) to middle switch MS(5.11)

Each of the N/d middle switches MS(5,1)-MS(5,16) in the middle stage 170 are connected from d+ input switches through two links each for a total of $(2\times d)^+$ links (for example 45) the links ML(5,1) and ML(5,2) are connected to the middle switch MS(5.1) from input switch MS(4.1), and the links ML(5,43) and ML(5,44) are connected to the middle switch MS(5,1) from input switch MS(4,11)) and also are connected to d⁺ switches in middle stage **180** through two links each for 50 a total of $(2\times d)^+$ links (for example the links ML(6,1) and ML(6,2) are connected from middle switch MS(5,1) to middle switch MS(6,1), and the links ML(6,3) and ML(6,4)are connected from middle switch MS(5,1) to middle switch

Each of the N/d middle switches MS(6,1)-MS(6,16) in the middle stage 180 are connected from d⁺ input switches through two links each for a total of $(2\times d)^+$ links (for example the links ML(6,1) and ML(6,2) are connected to the middle switch MS(6,1) from input switch MS(5,1), and the links 60 ML(6,23) and ML(6,24) are connected to the middle switch MS(6,1) from input switch MS(5,6)) and also are connected to d⁺ switches in middle stage 190 through two links each for a total of $(2\times d)^+$ links (for example the links ML(7,9) and ML(7,10) are connected from middle switch MS(6,3) to 65 middle switch MS(7,3), and the links ML(7,11) and ML(7, 12) are connected from middle switch MS(6,3) to middle

44

switch MS(7,1); In addition middle switch MS(6,3) is also connected to middle switch MS(7,9) through the links ML(7p,11) and ML(7p,12). The links ML(7,9), ML(7,10), ML(7,11) and ML(7,12) correspond to multistage network configuration and the links ML(7p,11) and ML(7p,12) correspond to the pyramid network configuration.)

Each of the N/d middle switches MS(7,1)-MS(7,16) in the middle stage 190 are connected from d+ input switches through two links each for a total of $(2\times d)^+$ links (for example the links ML(7,1) and ML(7,2) are connected to the middle switch MS(7,1) from input switch MS(6,1), and the links ML(7,11) and ML(7,12) are connected to the middle switch MS(7,1) from input switch MS(6,3)) and also are connected to d+ switches in middle stage 120 through two links each for a total of $(2\times d)^+$ links (for example middle switch MS(7,2) is connected to output switch OS2 through the links ML(8,5), ML(8,6), and also connected to middle switch OS1 through the links ML(8,7) and ML(8,8); In addition middle switch MS(7,2) is also connected to output switch OS5 through the links ML(8p,7) and ML(8p,8). The links ML(8,5), ML(8,6), ML(8,7) and ML(8,8) correspond to multistage network configuration and the links ML(8p,7) and ML(8p,8) correspond to the pyramid network configuration.)

Each of the N/d middle switches OS1-OS16 in the middle stage 120 are connected from d+ input switches through two links each for a total of $(2\times d)^+$ links (for example the links ML(8,1) and ML(8,2) are connected to the output switch OS1 from input switch MS(7,1), and the links ML(8,7) and ML(7,1)8) are connected to the output switch OS1 from input switch MS(7,2)).

Finally the connection topology of the network 800A shown in FIG. 8A is logically similar to back to back inverse Benes connection topology. In addition there are additional nearest neighbor links (i.e., pyramid links as described before) between the input stage 110 and middle stage 130; between middle stage 130 and middle stage 140; between middle stage 180 and middle stage 190; and middle stage 190 and output stage 120.

Applicant notes that in a multi-stage pyramid network with mid links may not contribute for the connectivity however these links can be cleverly used to reduce the latency and power in an integrated circuit even though the number of cross points required are more to connect pyramid links than is required in a purely multi-stage network.

Applicant notes that in the generalized multi-link multistage pyramid network V_{mlink-p}(N₁, N₂, d, s) the pyramid links are provided between any two successive stages as illustrated in the diagram 800A of FIG. 8A. The pyramid links in general are also provided between the switches in the same stage. The pyramid links are also provided between any two arbitrary stages.

Referring to diagram 800B in FIG. 8B, is a folded version of the multi-link multi-stage pyramid network 800A shown in 55 FIG. 8A. The network 800B in FIG. 8B shows input stage 110 and output stage 120 are placed together. That is input switch IS1 and output switch OS1 are placed together, input switch IS2 and output switch OS2 are placed together, and similarly input switch IS16 and output switch OS16 are placed together. All the right going links {i.e., inlet links IL1-IL32 and middle links ML(1,1)-ML(1,64) correspond to input switches IS1-IS16, and all the left going links {i.e., middle links ML(8,1)-ML(8,64) and outlet links OL1-OL32} correspond to output switches OS1-OS16.

Middle stage 130 and middle stage 190 are placed together. That is middle switches MS(1,1) and MS(7,1) are placed together, middle switches MS(1,2) and MS(7,2) are placed

together, and similarly middle switches MS(1,16) and MS(7,16) are placed together. All the right going middle links $\{i.e., middle links ML(1,1)-ML(1,64) and middle links ML(2,1)-ML(2,64)\}$ correspond to middle switches MS(1,1)-MS(1,16), and all the left going middle links $\{i.e., middle links ML(7,1)-ML(7,64) and middle links ML(8,1) and ML(8,64)\}$ correspond to middle switches MS(7,1)-MS(7,16).

Middle stage **140** and middle stage **180** are placed together. That is middle switches MS(2,1) and MS(6,1) are placed together, middle switches MS(2,2) and MS(6,2) are placed together, and similarly middle switches MS(2,16) and MS(6,16) are placed together. All the right going middle links $\{i.e., middle links ML(2,1)-ML(2,64)$ and middle links $ML(3,1)-ML(3,64)\}$ correspond to middle switches MS(2,1)-MS(2,16), and all the left going middle links $\{i.e., middle links ML(6,1)-ML(6,64)$ and middle links ML(7,1) and $ML(7,64)\}$ correspond to middle switches MS(6,1)-MS(6,16).

Middle stage 150 and middle stage 170 are placed together. That is middle switches MS(3,1) and MS(5,1) are placed together, middle switches MS(3,2) and MS(5,2) are placed 20 together, and similarly middle switches MS(3,16) and MS(5,16) are placed together. All the right going middle links $\{i.e., middle links ML(3,1)-ML(3,64)$ and middle links $ML(4,1)-ML(4,64)\}$ correspond to middle switches MS(3,1)-MS(3,16), and all the left going middle links $\{i.e., middle links ML(5,1)-ML(5,64)$ and middle links ML(6,1) and $ML(6,64)\}$ correspond to middle switches MS(5,1)-MS(5,16).

Middle stage 160 is placed alone. All the right going middle links are the middle links ML(4,1)-ML(4,64) and all the left going middle links are middle links ML(5,1)-ML(5,30,64).

Just the same way as the connection topology of the network 800A shown in FIG. 8A, the connection topology of the network 800B shown in FIG. 8B is the folded version and logically similar to back to back inverse Benes connection 35 topology. In addition there are additional nearest neighbor links (i.e., pyramid links as described before) between the input stage 110 and middle stage 130; between middle stage 130 and middle stage 140; between middle stage 180 and middle stage 190; and middle stage 190 and output stage 120.

The multi-link multi-stage pyramid network $V_{fold\text{-}mlink\text{-}p}$ (N_1 , N_2 , d, s) where N_1 = N_2 =32; d=2; and s=2 shown in diagram **800**B of FIG. **8**B is built on top of the generalized multi-link multi-stage network $V_{fold\text{-}mlink}(N_1, N_2, d, s)$ where N_1 = N_2 =32; d=2; and s=2 by also adding a few more links.

Since as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,389 that is incorporated by reference above, a network $V_{fold\text{-}mlink}(N_1, N_2, d, s)$ can be operated in rearrangeably non-blocking manner for arbitrary fan-out multicast connections and also can be operated in strictly non-blocking manner for unicast connections, the network $V_{fold\text{-}mlink\text{-}p}(N_1, N_2, d, s)$ can be operated in rearrangeably non-blocking manner for arbitrary fan-out multicast connections and also can be operated in strictly non-blocking manner for unicast connections.

In one embodiment, in the network **800**B of FIG. **8**B, the switches that are placed together are implemented as separate switches then the network **800**B is the generalized folded multi link multi stage pyramid network $V_{fold-mlink-p}(N_1,N_2,d,s)$ where $N_1=N_2=32$; d=2; and s=2 with nine stages. That is 60 the switches that are placed together in input stage **110** and output stage **120** are implemented as a two by four switch and a four by two switch respectively. For example the input switch IS1 and output switch OS1 are placed together; so input switch IS1 is implemented as two by four switch with 65 the inlet links IL1 and IL2 being the inputs of the input switch IS1 and middle links ML(1,1)-ML(1,4) being the outputs of

46

the input switch IS1; and output switch OS1 is implemented as four by two switch with the middle links ML(8,1), ML(8,2), ML(8,7) and ML(8,8) being the inputs of the output switch OS1 and outlet links OL1-OL2 being the outputs of the output switch OS1. Similarly in this embodiment of network 800B all the switches that are placed together in each middle stage are implemented as separate switches.

Modified-Hypercube Topology Layout Scheme:

Referring to layout 800C of FIG. 8C, in one embodiment, there are sixteen blocks namely Block 1_2, Block 3_4, Block 5 6, Block 7 8, Block 9 10, Block 11 12, Block 13 14, Block 15_16, Block 17_18, Block 19_20, Block 21_22, Block 23_24, Block 25_26, Block 27_28, Block 29_30, and Block 31_32. Each block implements all the switches in one row of the network 800B of FIG. 8B, one of the key aspects of the current invention. For example Block 1_2 implements the input switch IS1, output Switch OS1, middle switch MS(1,1), middle switch MS(7,1), middle switch MS(2,1), middle switch MS(6,1), middle switch MS(3,1), middle switch MS(5.1), and middle switch MS(4.1). For the simplification of illustration, Input switch IS1 and output switch OS1 together are denoted as switch 1; Middle switch MS(1,1) and middle switch MS(7,1) together are denoted by switch 2; Middle switch MS(2,1) and middle switch MS(6,1) together are denoted by switch 3; Middle switch MS(3,1) and middle switch MS(5,1) together are denoted by switch 4; Middle switch MS(4,1) is denoted by switch 5.

All the straight middle links are illustrated in layout 800C of FIG. 8C. For example in Block 1_2, inlet links IL1-IL2, outlet links OL1-OL2, middle link ML(1,1), middle link ML(1,2), middle link ML(8,1), middle link ML(8,2), middle link ML(2,1), middle link ML(2,2), middle link ML(7,1), middle link ML(7,2), middle link ML(3,1), middle link ML(3,2), middle link ML(6,1), middle link ML(6,2), middle link ML(4,1), middle link ML(4,2), middle link ML(5,1) and middle link ML(5,2) are illustrated in layout 800C of FIG. 8C.

Even though it is not illustrated in layout 800C of FIG. 8C, in each block, in addition to the switches there may be Configurable Logic Blocks (CLB) or any arbitrary digital circuit depending on the applications in different embodiments. There are four quadrants in the layout 800C of FIG. 8C namely top-left, bottom-left, top-right and bottom-right quadrants. Top-left quadrant implements Block 1_2, Block 3_4, Block 5_6, and Block 7_8. Bottom-left quadrant implements Block 9_10, Block 11_12, Block 13_14, and Block 15 16. Top-right quadrant implements Block 17 18. Block 19_20, Block 21_22, and Block 23_24. Bottom-right quadrant implements Block 25_26, Block 2728, Block 29_30, and Block 31_32. There are two halves in layout 800C of FIG. 8C namely left-half and right-half. Left-half consists of top-left and bottom-left quadrants. Right-half consists of top-right and bottom-right quadrants.

Recursively in each quadrant there are four sub-quadrants.

For example in top-left quadrant there are four sub-quadrants namely top-left sub-quadrant, bottom-left sub-quadrant, top-right sub-quadrant and bottom-right sub-quadrant. Top-left sub-quadrant of top-left quadrant implements Block 1_2.

Bottom-left sub-quadrant of top-left quadrant implements

Block 3_4. Top-right sub-quadrant of top-left quadrant implements Block 5_6. Finally bottom-right sub-quadrant of top-left quadrant implements Block 7_8. Similarly there are two sub-halves in each quadrant. For example in top-left quadrant there are two sub-halves namely left-sub-half and right-sub-half. Left-sub-half of top-left quadrant implements Block 1_2 and Block 3_4. Right-sub-half of top-left quadrant implements Block 5_6 and Block 7_8. Finally applicant notes

48 links ML(3,4) and ML(6,20) are implemented as a time division multiplexed single track).

that in each quadrant or half the blocks are arranged as a general binary hypercube. Recursively in larger multi-stage network $V_{fold\text{-}mlink\text{-}p}(N_1, N_2, d, s)$ where $N_1 = N_2 > 32$, the layout in this embodiment in accordance with the current invention, will be such that the super-quadrants will also be arranged in d-ary hypercube manner. (In the embodiment of the layout 800C of FIG. 8C, it is binary hypercube manner since d=2, in the network $V_{fold\text{-}mlink\text{-}p}(N_1, N_2, d, s)$ 800B of FIG. 8B).

Layout **800**D of FIG. **8**D illustrates the inter-block links between switches **1** and **2** of each block. For example middle links ML(**1**,**3**), ML(**1**,**4**), ML(**8**,**7**), and ML(**8**,**8**) are connected between switch **1** of Block **1**_2 and switch **2** of Block **3**_4. Middle links ML(**1**,**7**), ML(**1**,**8**), ML(**8**,**3**), and ML(**8**,**4**) are connected between switch **2** of Block **1**_2 and switch **1** of Block **3**_4. Similarly pyramid middle links ML(**1**,**7**), ML(**1**,**9**,**8**), ML(**8**,**9**,**19**), and ML(**8**,**9**,**20**) are connected between switch **1** of Block **3**_4 and switch **2** of Block **9**_10. Similarly pyramid middle links ML(**1**,**9**,**9**), ML(**1**,**9**,**9**), and ML(**8**,**9**,**8** are connected between switch **2** of Block **3**_4 and switch **1** of Block **9**_10.

Applicant notes that the inter-block links illustrated in layout 800D of FIG. 8D can be implemented as vertical tracks in one embodiment. Also in one embodiment inter-block 25 links are implemented as two different tracks (for example middle links ML(1,4) and ML(8,8) are implemented as two different tracks); or in an alternative embodiment inter-block links are implemented as a time division multiplexed single track (for example middle links ML(1,4) and ML(8,8) are 30 implemented as a time division multiplexed single track).

Layout **800**E of FIG. **8**E illustrates the inter-block links between switches **2** and **3** of each block. For example middle links ML(**2**,**3**), ML(**2**,**4**), ML(**7**,**11**), and ML(**7**,**12**) are connected between switch **2** of Block **1**_2 and switch **3** of Block **3**_4. Middle links ML(**2**,**11**), ML(**2**,**12**), ML(**7**,**3**), and ML(**7**,**4**) are connected between switch **3** of Block **12** and switch **2** of Block **3**_4. Similarly pyramid middle links ML(**2***p*,**35**), ML(**2***p*,**36**), ML(**7***p*,**11**), and ML(**7***p*,**12**) are connected between switch **1** of Block **5**_6 and switch **2** of Block **17**_**18**. 40 Similarly pyramid middle links ML(**2***p*,**11**), ML(**2***p*,**12**), ML(**7***p*,**35**), and ML(**7***p*,**36**) are connected between switch **2** of Block **5**_6 and switch **1** of Block **17**_**18**.

Applicant notes that the inter-block links illustrated in layout **800**E of FIG. **8**E can be implemented as horizontal 45 tracks in one embodiment. Also in one embodiment interblock links are implemented as two different tracks (for example middle links ML(**2,12**) and ML(**7,4**) are implemented as two different tracks); or in an alternative embodiment inter-block links are implemented as a time division 50 multiplexed single track (for example middle links ML(**2,12**) and ML(**7,4**) are implemented as a time division multiplexed single track).

Layout **800**F of FIG. **8**F illustrates the inter-block links between switches **3** and **4** of each block. For example middle 55 links ML(**3**,**3**), ML(**3**,**4**), ML(**6**,**19**), and ML(**6**,**20**) are connected between switch **3** of Block **1**_2 and switch **4** of Block **3**_4. Similarly middle links ML(**3**,**19**), ML(**3**,**20**), ML(**6**,**3**), and ML(**6**,**4**) are connected between switch **4** of Block **1**_2 and switch **3** of Block **3**_4. Applicant notes that the interblock links illustrated in layout **800**F of FIG. **8**F can be implemented as vertical tracks in one embodiment. Also in one embodiment inter-block links are implemented as two different tracks (for example middle links ML(**3**,**4**) and ML(**6**,**20**) are implemented as two different tracks); or in an 65 alternative embodiment inter-block links are implemented as a time division multiplexed single track (for example middle

Layout 800G of FIG. 8G illustrates the inter-block links between switches 4 and 5 of each block. For example middle links ML(4,3), ML(4,4), ML(5,35), and ML(5,36) are connected between switch 4 of Block 1 2 and switch 5 of Block 3 4. Similarly middle links ML(4.35), ML(4.36), ML(5.3). and ML(5,4) are connected between switch 5 of Block 1_2 and switch 4 of Block 3_4. Applicant notes that the interblock links illustrated in layout 800G of FIG. 8G can be implemented as horizontal tracks in one embodiment. Also in one embodiment inter-block links are implemented as two different tracks (for example middle links ML(4,4) and ML(5,36) are implemented as two different tracks); or in an alternative embodiment inter-block links are implemented as a time division multiplexed single track (for example middle links ML(4,4) and ML(5,36) are implemented as a time division multiplexed single track).

The complete layout for the network **800**B of FIG. **8**B is given by combining the links in layout diagrams of **800**C, **800**D, **800**E, **800**E, and **800**G. Applicant notes that in the layout **800**C of FIG. **8**C, the inter-block links between switch **1** and switch **2** of corresponding blocks are vertical tracks as shown in layout **800**D of FIG. **8**D; the inter-block links between switch **2** and switch **3** of corresponding blocks are horizontal tracks as shown in layout **800**E of FIG. **8**E; the inter-block links between switch **3** and switch **4** of corresponding blocks are vertical tracks as shown in layout **800**F of FIG. **8**F; and finally the inter-block links between switch **4** and switch **5** of corresponding blocks are horizontal tracks as shown in layout **800**G of FIG. **8**G. The pattern is alternate vertical tracks and horizontal tracks. It continues recursively for larger networks of N>32 as will be illustrated later.

Some of the key aspects of the current invention are discussed. 1) All the switches in one row of the multi-stage network **800**B are implemented in a single block. 2) The blocks are placed in such a way that all the inter-block links are either horizontal tracks or vertical tracks; 3) Since all the inter-block links are either horizontal or vertical tracks, all the inter-block links can be mapped on to island-style architectures in current commercial FPGA's; 4) The length of the longest wire is about half of the width (or length) of the complete layout (For example middle link ML(**4,4**) is about half the width of the complete layout).

In accordance with the current invention, the layout 800C in FIG. 8C can be recursively extended for any arbitrarily large generalized folded multi-link multi-stage network $V_{fold-mlink-p}(N_1,\,N_2,\,d,\,s)$ the sub-quadrants, quadrants, and super-quadrants are arranged in d-ary hypercube manner and also the inter-blocks are accordingly connected in d-ary hypercube topology. Even though all the embodiments in the current invention are illustrated for N_1 = N_2 , the embodiments can be extended for N_1 \neq N_2 .

Referring to layout **800**H of FIG. **8**H, illustrates the extension of layout **800**C for the network $V_{fold-mlink-p}(N_1, N_2, d, s)$ where $N_1 = N_2 = 128$; d=2; and s=2. There are four super-quadrants in layout **800**H namely top-left super-quadrant, bottom-left super-quadrant, top-right super-quadrant, bottom-right super-quadrant. Total number of blocks in the layout **800**H is sixty four. Top-left super-quadrant implements the blocks from block **1_2** to block **31_32**. Each block in all the super-quadrants has two more switches namely switch **6** and switch **7** in addition to the switches [**1-5**] illustrated in layout **800**C of FIG. **8**C. The inter-block link connection topology is the exactly the same between the switches **1** and **2**; switches **2** and

3; switches 3 and 4; switches 4 and 5 as it is shown in the layouts of FIG. 8D, FIG. 8E, FIG. 8F, and FIG. 8G respectively.

Bottom-left super-quadrant implements the blocks from block 33 34 to block 63 64. Top-right super-quadrant implements the blocks from block 65 66 to block 95 96. And bottom-right super-quadrant implements the blocks from block 97_98 to block 1_27_128. In all these three superquadrants also, the inter-block link connection topology is exactly the same between the switches 1 and 2; switches 2 and 3; switches 3 and 4; switches 4 and 5 as that of the top-left

Recursively in accordance with the current invention, the inter-block links connecting the switch $\bf 5$ and switch $\bf 6$ will be $_{15}$ vertical tracks between the corresponding switches of top-left super-quadrant and bottom-left super-quadrant. And similarly the inter-block links connecting the switch 5 and switch 6 will be vertical tracks between the corresponding switches of top-right super-quadrant and bottom-right super-quadrant. 20 The inter-block links connecting the switch 6 and switch 7 will be horizontal tracks between the corresponding switches of top-left super-quadrant and top-right super-quadrant. And similarly the inter-block links connecting the switch 6 and switch 7 will be horizontal tracks between the corresponding 25 switches of bottom-left super-quadrant and bottom-right super-quadrant.

Referring to diagram 800I of FIG. 8I illustrates a high-level implementation of Block 1 2 (Each of the other blocks have similar implementation) of the layout 800C of FIG. 8C which 30 represents a generalized folded multi-link multi-stage network $V_{fold\text{-}mlink\text{-}p}(N_1, N_2, d, s)$ where N_1 = N_2 =32; d=2; and s=2. Block 1_2 in 800I illustrates both the intra-block and inter-block links connected to Block 1_2. The layout diagram **800**I corresponds to the embodiment where the switches that 35 are placed together are implemented as separate switches in the network 800B of FIG. 8B. As noted before then the network 800B is the generalized folded multi-link multistage network $V_{fold-mlink-p}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=2 with nine stages.

That is the switches that are placed together in Block 1_2 as shown in FIG. 8I are namely input switch IS1 and output switch OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switches implemented are input switch IS1 and 45 output switch OS1); middle switch MS(1,1) and middle switch MS(7,1) belonging to switch 2; middle switch MS(2, 1) and middle switch MS(6,1) belonging to switch 3; middle switch MS(3,1) and middle switch MS(5,1) belonging to switch 4; And middle switch MS(4,1) belonging to switch 5. 50

Input switch IS1 is implemented as two by four switch with the inlet links IL1 and IL2 being the inputs of the input switch IS1 and middle links ML(1,1)-ML(1,4) being the outputs of the input switch IS1; and output switch OS1 is implemented as four by two switch with the middle links ML(8,1), ML(8, 55 mented as six by six switch with the inlet links ILL IL2 and 2), ML(8,7), and ML(8,8) being the inputs of the output switch OS1 and outlet links OL1-OL2 being the outputs of the output switch OS1.

Middle switch MS(1,1) is implemented as four by four switch with the middle links ML(1,1), ML(1,2), ML(1,7) and 60 ML(1,8) being the inputs and middle links ML(2,1)-ML(2,4)being the outputs; and middle switch MS(7,1) is implemented as four by four switch with the middle links ML(7,1), ML(7,1)2), ML(7,11) and ML(7,12) being the inputs and middle links ML(8,1)-ML(8,4) being the outputs. Similarly all the other middle switches are also implemented as four by four switches as illustrated in 800I of FIG. 8I.

50

Generalized Multi-Link Butterfly Fat Pyramid Network Embodiment:

In another embodiment in the network 800B of FIG. 8B, the switches that are placed together are implemented as combined switch then the network 800B is the generalized multi-link butterfly fat pyramid network $V_{\textit{mlink-bfp}}(N_1, N_2, d,$ s) where $N_1=N_2=32$; d=2; and s=2 with five stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,390 that is incorporated by reference above. That is the switches that are placed together in input stage 110 and output stage 120 are implemented as a six by six switch. For example the input switch IS1 and output switch OS1 are placed together; so input switch IS1 and output OS1 are implemented as a six by six switch with the inlet links ILL IL2, ML(8,1), ML(8,2), ML(8,7) and ML(8,8) being the inputs of the combined switch (denoted as IS1&OS1) and middle links ML(1,1), ML(1,2), ML(1,3), ML(1,4), OL1 and OL2 being the outputs of the combined switch IS1&OS1. Similarly in this embodiment of network 800B all the switches that are placed together are implemented as a combined switch.

Layout diagrams 800C in FIG. 8C, 800D in FIG. 8D, 800E in FIG. 8E, 800F in FIG. 8G are also applicable to generalized multi-link butterfly fat pyramid network $V_{\textit{mlink-bfp}}(N_1, N_2, d,$ s) where $N_1=N_2=32$; d=2; and s=2 with five stages. The layout 800C in FIG. 8C can be recursively extended for any arbitrarily large generalized multi-link butterfly fat pyramid network V_{mlink-bfp}(N₁, N₂, d, s). Accordingly layout 800H of FIG. 8H is also applicable to generalized multi-link butterfly fat pyramid network $V_{mlink-bfp}(N_1, N_2, d, s)$.

Referring to diagram 800J of FIG. 8J illustrates a highlevel implementation of Block **1_2** (Each of the other blocks have similar implementation) of the layout 800C of FIG. 8C which represents a generalized multi-link butterfly fat pyramid network $V_{mlink.b/p}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=2. Block **1_2** in **800**J illustrates both the intra-block and inter-block links. The layout diagram 800J corresponds to the embodiment where the switches that are placed together are implemented as combined switch in the network 800B of 40 FIG. 8B. As noted before then the network 800B is the generalized multi-link butterfly fat pyramid network V_{mlink-bfp} (N_1, N_2, d, s) where $N_1=N_2=32$; d=2; and s=2 with five stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,390 that is incorporated by reference above.

That is the switches that are placed together in Block **1_2** as shown in FIG. 8J are namely the combined input and output switch IS1&OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switch implemented is combined input and output switch IS1&OS1); middle switch MS(1,1) belonging to switch 2; middle switch MS(2,1) belonging to switch 3; middle switch MS(3,1) belonging to switch 4; And middle switch MS(4,1) belonging to switch 5.

Combined input and output switch IS1&OS1 is imple-ML(8,1), ML(8,2), ML(8,7), and ML(8,8) being the inputs and middle links ML(1,1)-ML(1,4), and outlet links OL1-OL2 being the outputs.

Middle switch MS(1,1) is implemented as eight by eight switch with the middle links ML(1,1), ML(1,2), ML(1,7), ML(1,8), ML(7,1), ML(7,2), ML(7,11) and ML(7,12) being the inputs and middle links ML(2,1)-ML(2,4) and middle links ML(8,1)-ML(8,4) being the outputs. Similarly all the other middle switches are also implemented as eight by eight switches as illustrated in 800J of FIG. 8J.

In another embodiment, middle switch MS(1,1) (or the middle switches in any of the middle stage excepting the root

middle stage) of Block 1_2 of $V_{\it mlink-bfp}(N_1,\,N_2,\,d,\,s)$ can be implemented as a four by eight switch and a four by four switch to save cross points. This is because the left going middle links of these middle switches are never setup to the right going middle links. For example, in middle switch MS(1,1) of Block 1_2 as shown FIG. 8J, the left going middle links namely ML(7,1), ML(7,2), ML(7,11), and ML(7,12)are never switched to the right going middle links ML(2,1), ML(2,2), ML(2,3), and ML(2,4). And hence to implement MS(1,1) two switches namely: 1) a four by eight switch with the middle links ML(1,1), ML(1,2), ML(1,7), and ML(1,8) as inputs and the middle links ML(2,1), ML(2,2), ML(2,3), ML(2,4), ML(8,1), ML(8,2), ML(8,3), and ML(8,4) as outputs and 2) a four by four switch with the middle links ML(7, $_{15}$ 1), ML(7,2), ML(7,11), and ML(7,12) as inputs and the middle links ML(8,1), ML(8,2), ML(8,3), and ML(8,4) as outputs are sufficient without loosing any connectivity of the embodiment of MS(1,1) being implemented as an eight by eight switch as described before.)

Generalized Multi-Stage Pyramid Network Embodiment:

In one embodiment, in the network 800B of FIG. 8B, the switches that are placed together are implemented as two separate switches in input stage 110 and output stage 120; and as four separate switches in all the middle stages, then the 25 network 800B is the generalized folded multi-stage pyramid network $V_{fold-p}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d=2; and s=2with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,391 that is incorporated by reference above. That is the switches that are placed together in input stage 110 and output stage 120 are implemented as a two by four switch and a four by two switch respectively. For example the switch input switch IS1 and output switch OS1 are placed together; so input switch IS1 is implemented as inputs and middle links ML(1,1)-ML(1,4) being the outputs; and output switch OS1 is implemented as four by two switch with the middle links ML(8,1), ML(8,2), ML(8,7) and ML(8, 8) being the inputs and outlet links OL1-OL2 being the out-

The switches, corresponding to the middle stages that are placed together are implemented as four two by two switches. For example middle switches MS(1,1), MS(1,17), MS(7,1), and MS(7,17) are placed together; so middle switch MS(1,1)is implemented as two by two switch with middle links ML(1, 45 1) and ML(1,7) being the inputs and middle links ML(2,1)and ML(2,3) being the outputs; middle switch MS(1,17) is implemented as two by two switch with the middle links ML(1,2) and ML(1,8) being the inputs and middle links ML(2,2) and ML(2,4) being the outputs; middle switch 50 MS(7,1) is implemented as two by two switch with middle links ML(7,1) and ML(7,11) being the inputs and middle links ML(8,1) and ML(8,3) being the outputs; And middle switch MS(7,17) is implemented as two by two switch with the middle links ML(7,2) and ML(7,12) being the inputs and 55 middle links ML(8,2) and ML(8,4) being the outputs; Similarly in this embodiment of network 800B all the switches that are placed together are implemented as separate switches.

Layout diagrams 800C in FIG. 8C, 800D in FIG. 8D, 800E in FIG. 8E, 800F in FIG. 8G are also applicable to generalized 60 folded multi-stage pyramid network $V_{fold-p}(N_1,\ N_2,\ d,\ s)$ where $N_1=N_2=32$; d=2; and s=2 with nine stages. The layout 800C in FIG. 8C can be recursively extended for any arbitrarily large generalized folded multi-stage pyramid network $V_{fold-p}(N_1,\ N_2,\ d,\ s)$. Accordingly layout 800H of FIG. 8H is 65 also applicable to generalized folded multi-stage pyramid network $V_{fold-p}(N_1,\ N_2,\ d,\ s)$.

52

Referring to diagram **800**K of FIG. **8**K illustrates a high-level implementation of Block **1_2** (Each of the other blocks have similar implementation) of the layout **800**C of FIG. **8**C which represents a generalized folded multi-stage pyramid network $V_{fold-p}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=2. Block **1_2** in **800**K illustrates both the intra-block and interblock links. The layout diagram **800**K corresponds to the embodiment where the switches that are placed together are implemented as separate switches in the network **800**B of FIG. **8**B. As noted before then the network **800**B is the generalized folded multi-stage pyramid network $V_{fold-p}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=2 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,391 that is incorporated by reference above.

That is the switches that are placed together in Block 1_2 as shown in FIG. 8K are namely the input switch IS1 and output switch OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switches implemented are input switch IS1 and output switch OS1); middle switches MS(1,1), MS(1,17), MS(7,1) and MS(7,17) belonging to switch 2; middle switches MS(2,1), MS(2,17), MS(6,1) and MS(6,17) belonging to switch 3; middle switches MS(3,1), MS(3,17), MS(5,1) and MS(5,17) belonging to switch 4; And middle switches MS(4,1), and MS(4,17) belonging to switch 5.

Input switch IS1 and output switch OS1 are placed together; so input switch IS1 is implemented as two by four switch with the inlet links IL1 and IL2 being the inputs and middle links ML(1,1)-ML(1,4) being the outputs; and output switch OS1 is implemented as four by two switch with the middle links ML(8,1), ML(8,2), ML(8,7) and ML(8,8) being the inputs and outlet links OL1-OL2 being the outputs.

Middle switches MS(1,1), MS(1,17), MS(7,1), and MS(7,1)two by four switch with the inlet links IL1 and IL2 being the 35 17) are placed together, so middle switch MS(1,1) is implemented as two by two switch with middle links ML(1,1) and ML(1,7) being the inputs and middle links ML(2,1) and ML(2,3) being the outputs; middle switch MS(1,17) is implemented as two by two switch with the middle links ML(1,2)and ML(1,8) being the inputs and middle links ML(2,2) and ML(2,4) being the outputs; middle switch MS(7,1) is implemented as two by two switch with middle links ML(7,1) and ML(7,11) being the inputs and middle links ML(8,1) and ML(8,3) being the outputs; And middle switch MS(7,17) is implemented as two by two switch with the middle links ML(7,2) and ML(7,12) being the inputs and middle links ML(8,2) and ML(8,4) being the outputs. Similarly all the other middle switches are also implemented as two by two switches as illustrated in 800K of FIG. 8K.

Generalized Multi-Stage Pyramid Network Embodiment with S=1:

In one embodiment, in the network 800B of FIG. 8B (where it is implemented with s=1), the switches that are placed together are implemented as two separate switches in input stage 110 and output stage 120; and as two separate switches in all the middle stages, then the network 800B is the generalized folded multi-stage network $V_{\textit{fold-p}}(N_1,\,N_2,\,d,\,s)$ where $N_1=N_2=32$; d=2; and s=1 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,391 that is incorporated by reference above. That is the switches that are placed together in input stage 110 and output stage 120 are implemented as two, two by two switches. For example the switch input switch IS1 and output switch OS1 are placed together; so input switch IS1 is implemented as two by two switch with the inlet links IL1 and IL2 being the inputs and middle links ML(1,1)-ML(1,2) being the outputs; and output switch OS1 is implemented as two by two switch

with the middle links ML(8,1) and ML(8,3) being the inputs and outlet links OL1-OL2 being the outputs.

The switches, corresponding to the middle stages that are placed together are implemented as two, two by two switches. For example middle switches MS(1,1) and MS(7,1) are placed together; so middle switch MS(1,1) is implemented as two by two switch with middle links ML(1,1) and ML(1,3) being the inputs and middle links ML(2,1) and ML(2,2) being the outputs; middle switch MS(7,1) is implemented as two by two switch with middle links ML(7,1) and ML(7,5) being the inputs and middle links ML(8,1) and ML(8,2) being the outputs; Similarly in this embodiment of network 800B all the switches that are placed together are implemented as two separate switches.

Layout diagrams **800**C in FIG. **8C**, **800**D in FIG. **8D**, **800**E in FIG. **8E**, **800**F in FIG. **8G** are also applicable to generalized folded multi-stage pyramid network $V_{fold-p}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d = 2; and s = 1 with nine stages. The layout **800**C in FIG. **8**C can be recursively extended for any arbitrarily large generalized folded multi stage network $V_{fold}(N_1, N_2, d, s)$. Accordingly layout **800**H of FIG. **8**H is also applicable to generalized folded multi-stage pyramid network $V_{fold-p}(N_1, N_2, d, s)$.

Referring to diagram **800**K1 of FIG. **8**K1 illustrates a highlevel implementation of Block **1_2** (Each of the other blocks have similar implementation) for the layout **800**C of FIG. **8**C when s=1 which represents a generalized folded multi-stage pyramid network $V_{fold-p}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d=2; and s=1 (All the double links are replaced by single links when s=1). Block **1_2** in **800**K1 illustrates both the intrablock and inter-block links. The layout diagram **800**K1 corresponds to the embodiment where the switches that are placed together are implemented as separate switches in the network **800**B of FIG. **8**B when s=1. As noted before then the network **800**B is the generalized folded multi-stage pyramid network $V_{fold-p}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d=2; and s=1 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,391 that is incorporated by reference above.

That is the switches that are placed together in Block 1_2 as shown in FIG. 8K1 are namely the input switch IS1 and output switch OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switches implemented are input switch 45 IS1 and output switch OS1); middle switches MS(1,1) and MS(7,1) belonging to switch 2; middle switches MS(2,1) and MS(6,1) belonging to switch 3; middle switches MS(3,1) and MS(5,1) belonging to switch 4; And middle switch MS(4,1) belonging to switch 5.

Input switch IS1 and output switch OS1 are placed together; so input switch IS1 is implemented as two by two switch with the inlet links IL1 and IL2 being the inputs and middle links ML(1,1)-ML(1,2) being the outputs; and output switch OS1 is implemented as two by two switch with the 55 middle links ML(8,1) and ML(8,3) being the inputs and outlet links OL1-OL2 being the outputs.

Middle switches MS(1,1) and MS(7,1) are placed together; so middle switch MS(1,1) is implemented as two by two switch with middle links ML(1,1) and ML(1,3) being the 60 inputs and middle links ML(2,1) and ML(2,2) being the outputs; And middle switch MS(7,1) is implemented as two by two switch with middle links ML(7,1) and ML(7,5) being the inputs and middle links ML(8,1) and ML(8,2) being the outputs. Similarly all the other middle switches are also implemented as two by two switches as illustrated in 800K1 of FIG. 8K1.

54

Generalized Butterfly Fat Pyramid Network Embodiment:

In another embodiment in the network 800B of FIG. 8B, the switches that are placed together are implemented as two combined switches then the network 800B is the generalized butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=2 with five stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,387 that is incorporated by reference above. That is the switches that are placed together in input stage 110 and output stage 120 are implemented as a six by six switch. For example the input switch IS1 and output switch OS1 are placed together; so input output switch IS1&OS1 are implemented as a six by six switch with the inlet links ILL IL2, ML(8,1), ML(8,2), ML(8, 7) and ML(8,8) being the inputs of the combined switch (denoted as IS1&OS1) and middle links ML(1,1), ML(1,2), ML(1,3), ML(1,4), OL1 and OL2 being the outputs of the combined switch IS1&OS1.

The switches, corresponding to the middle stages that are placed together are implemented as two four by four switches. For example middle switches MS(1,1) and MS(1, 17) are placed together; so middle switch MS(1,1) is implemented as four by four switch with middle links ML(1,1), ML(1,7), ML(7,1) and ML(7,11) being the inputs and middle links ML(2,1), ML(2,3), ML(8,1) and ML(8,3) being the outputs; middle switch MS(1,17) is implemented as four by four switch with the middle links ML(1,2), ML(1,8), ML(7,2) and ML(7,12) being the inputs and middle links ML(2,2), ML(2,4), ML(8,2) and ML(8,4) being the outputs. Similarly in this embodiment of network 800B all the switches that are placed together are implemented as a two combined switches.

Layout diagrams **800**C in FIG. **8**C, **800**D in FIG. **8**D, **800**E in FIG. **8**E, **800**F in FIG. **8**G are also applicable to generalized butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=2 with five stages. The layout **800**C in FIG. **8**C can be recursively extended for any arbitrarily large generalized butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$. Accordingly layout **800**H of FIG. **8**H is also applicable to generalized butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$.

Referring to diagram **800**L of FIG. **8**L illustrates a highlevel implementation of Block **1_2** (Each of the other blocks have similar implementation) of the layout **800**C of FIG. **8**C which represents a generalized butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d = 2; and s = 2. Block **1_2** in **800**L illustrates both the intra-block and inter-block links.

45 The layout diagram **800**L corresponds to the embodiment where the switches that are placed together are implemented as two combined switches in the network **800**B of FIG. **8**B. As noted before then the network **800**B is the generalized butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d = 2; and s = 2 with five stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,387 that is incorporated by reference above.

That is the switches that are placed together in Block 1_2 as shown in FIG. 8L are namely the combined input and output switch IS1&OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switch implemented is combined input and output switch IS1&OS1); middle switch MS(1,1) and MS(1,17) belonging to switch 2; middle switch MS(2,1) and MS(2,17) belonging to switch 3; middle switch MS(3,1) and MS(3,17) belonging to switch 4; And middle switch MS(4,1) belonging to switch 5.

Combined input and output switch IS1&OS1 is implemented as six by six switch with the inlet links IL1, IL2, ML(8,1), ML(8,2), ML(8,7) and ML(8,8) being the inputs and middle links ML(1,1)-ML(1,4) and outlet links OL1-OL2 being the outputs.

Middle switch MS(1,1) is implemented as four by four switch with middle links ML(1,1), ML(1,7), ML(7,1) and ML(7,11) being the inputs and middle links ML(2,1), ML(2,3), ML(8,1) and ML(8,3) being the outputs; And middle switch MS(1,17) is implemented as four by four switch with the middle links ML(1,2), ML(1,8), ML(7,2) and ML(7,12) being the inputs and middle links ML(2,2), ML(2,4), ML(8,2) and ML(8,4) being the outputs. Similarly all the other middle switches are also implemented as two four by four switches as illustrated in 800L of FIG. 8L.

In another embodiment, middle switch MS(1,1) (or the middle switches in any of the middle stage excepting the root middle stage) of Block 1_2 of $V_{mlink-bfp}(N_1, N_2, d, s)$ can be implemented as a two by four switch and a two by two switch to save cross points. This is because the left going middle links of these middle switches are never setup to the right going middle links. For example, in middle switch MS(1,1) of Block 1_2 as shown FIG. 8L, the left going middle links namely ML(7,1) and ML(7,11) are never switched to the right going middle links ML(2.1) and ML(2.3). And hence to 20 implement MS(1,1) two switches namely: 1) a two by four switch with the middle links ML(1,1) and ML(1,7) as inputs and the middle links ML(2,1), ML(2,3), ML(8,1), and ML(8,1)3) as outputs and 2) a two by two switch with the middle links ML(7,1) and ML(7,11) as inputs and the middle links ML(8, 25)1) and ML(8,3) as outputs are sufficient without loosing any connectivity of the embodiment of MS(1,1) being implemented as an eight by eight switch as described before.) Generalized Butterfly Fat Pyramid Network Embodiment with S=1:

In one embodiment, in the network 800B of FIG. 8B (where it is implemented with s=1), the switches that are placed together are implemented as a combined switch in input stage 110 and output stage 120; and as a combined switch in all the middle stages, then the network 800B is the 35 generalized butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$ where N₁=N₂=32; d=2; and s=1 with five stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,387 that is incorporated by reference above. That is the switches that are placed together in input stage 110 and output stage 40 120 are implemented as a four by four switch. For example the switch input switch IS1 and output switch OS1 are placed together; so input and output switch IS1&OS1 is implemented as four by four switch with the inlet links ILL IL2, ML(8,1) and ML(8,3) being the inputs and middle links 45 ML(1,1)-ML(1,2) and outlet links OL1-OL2 being the outputs

The switches, corresponding to the middle stages that are placed together are implemented as a four by four switch. For example middle switches MS(1,1) is implemented as four by 50 four switch with middle links ML(1,1), ML(1,3), ML(7,1) and ML(7,5) being the inputs and middle links ML(2,1), ML(2,2), ML(8,1) and ML(8,2) being the outputs.

Layout diagrams **800**C in FIG. **8**C, **800**D in FIG. **8**D, **800**E in FIG. **8**E, **800**F in FIG. **8**G are also applicable to generalized 55 butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$ where $N_1 = N_2 = 32$; d = 2; and s = 1 with five stages. The layout **800**C in FIG. **8**C can be recursively extended for any arbitrarily large generalized butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$. Accordingly layout **800**H of FIG. **8**H is also applicable to 60 generalized butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$.

Referring to diagram **800**L1 of FIG. **8**L1 illustrates a high-level implementation of Block **1_2** (Each of the other blocks have similar implementation) for the layout **800**C of FIG. **8**C when s=1 which represents a generalized butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=1 (All the double links are replaced by single links when

s=1). Block **1_2** in **800**K1 illustrates both the intra-block and inter-block links. The layout diagram **800**L1 corresponds to the embodiment where the switches that are placed together are implemented as a combined switch in the network **800**B of FIG. **8**B when s=1. As noted before then the network **800**B is the generalized butterfly fat pyramid network $V_{bfp}(N_1, N_2, d, s)$ where $N_1=N_2=32$; d=2; and s=1 with nine stages as disclosed in U.S. Provisional Patent Application Ser. No. 60/940,387 that is incorporated by reference above.

56

That is the switches that are placed together in Block 1_2 as shown in FIG. 8L1 are namely the input and output switch IS1&OS1 belonging to switch 1, illustrated by dotted lines, (as noted before switch 1 is for illustration purposes only, in practice the switches implemented are input switch IS1 and output switch OS1); middle switch MS(1,1) belonging to switch 2; middle switch MS(2,1) belonging to switch 3; middle switch MS(3,1) belonging to switch 4; And middle switch MS(4,1) belonging to switch 5.

Input and output switch IS1&OS1 are placed together; so input and output switch IS1&OS1 is implemented as four by four switch with the inlet links ILL IL2, ML(8,1) and ML(8,3) being the inputs and middle links ML(1,1)-ML(1,2) and outlet links OL1-OL2 being the outputs.

Middle switch MS(1,1) is implemented as four by four switch with middle links ML(1,1), ML(1,3), ML(7,1) and ML(7,5) being the inputs and middle links ML(2,1), ML(2,2), ML(8,1) and ML(8,2) being the outputs. Similarly all the other middle switches are also implemented as four by four switches as illustrated in 800L1 of FIG. 8L1.

In another embodiment, middle switch MS(1,1) (or the middle switches in any of the middle stage excepting the root middle stage) of Block 1_2 of $V_{mlink-bfp}(N_1, N_2, d, s)$ can be implemented as a two by four switch and a two by two switch to save cross points. This is because the left going middle links of these middle switches are never setup to the right going middle links. For example, in middle switch MS(1,1) of Block 1 2 as shown FIG. 8L1, the left going middle links namely ML(7,1) and ML(7,5) are never switched to the right going middle links ML(2,1) and ML(2,2). And hence to implement MS(1,1) two switches namely: 1) a two by four switch with the middle links ML(1,1) and ML(1,3) as inputs and the middle links ML(2,1), ML(2,2), ML(8,1), and ML(8, 2) as outputs and 2) a two by two switch with the middle links ML(7,1) and ML(7,5) as inputs and the middle links ML(8,1)and ML(8,2) as outputs are sufficient without loosing any connectivity of the embodiment of MS(1,1) being implemented as an eight by eight switch as described before.)

All the layout embodiments disclosed in the current invention are applicable to generalized multi-stage pyramid networks $V_p(N_1, N_2, d, s)$, generalized folded multi-stage pyramid networks $V_{fold-p}(N_1, N_2, d, s)$, generalized butterfly fat pyramid networks $V_{bfp}(N_1, N_2, d, s)$, generalized multi-link multi-stage pyramid networks $V_{mlimk-p}(N_1, N_2, d, s)$, generalized folded multi-link multi-stage pyramid networks $V_{fold-mlimk-p}(N_1, N_2, d, s)$, generalized multi-link butterfly fat pyramid networks $V_{mlimk-bfp}(N_1, N_2, d, s)$, and generalized hypercube networks $V_{CCC}(N_1, N_2, d, s)$ for s=1, 2, 3 or any number in general, and for both $N_1=N_2=N$ and $N_1\neq N_2$, and d is any integer.

Conversely applicant makes another important observation that generalized cube connected cycles networks $V_{CCC}\left(N_1,N_2,d,s\right)$ are implemented with the layout topology being the hypercube topology shown in layout **200**C of FIG. **2**C with large scale cross point reduction as any one of the networks described in the current invention namely: generalized multistage pyramid networks $V_p\left(N_1,N_2,d,s\right)$, generalized folded multi-stage pyramid networks $V_{fold-p}(N_1,N_2,d,s)$, general-

ized butterfly fat pyramid networks $V_{\mathit{bfp}}(N_1, N_2, d, s)$, generalized multi-link multi-stage pyramid networks $V_{\mathit{mlink-p}}(N_1, N_2, d, s)$, generalized folded multi-link multi-stage pyramid networks $V_{\mathit{fold-mlink-p}}(N_1, N_2, d, s)$, generalized multi-link butterfly fat pyramid networks $V_{\mathit{mlink-bfp}}(N_1, N_2, d, s)$ for s=1, 52, 3 or any number in general, and for both $N_1=N_2=N$ and $N_1\neq N_2$, and d is any integer.

Applicant notes that in the generalized multi-stage pyramid networks $V_p(N_1,N_2,d,s)$, generalized folded multi-stage pyramid networks $V_{fold-p}(N_1,N_2,d,s)$, generalized butterfly 10 fat pyramid networks $V_{bfp}(N_1,N_2,d,s)$, generalized multi-link multi-stage pyramid networks $V_{hfp}(N_1,N_2,d,s)$, generalized multi-link multi-stage pyramid networks $V_{mlink-p}(N_1,N_2,d,s)$, generalized folded multi-link multi-stage pyramid networks $V_{fold-mlink-p}(N_1,N_2,d,s)$, generalized multi-link butterfly fat pyramid networks $V_{mlink-bfp}(N_1,N_2,d,s)$, and generalized 15 hypercube networks $V_{CCC}(N_1,N_2,d,s)$ the pyramid links are provided a) between the switches in any two successive stages, b) between the switches in the same stage, and c) between the switches any two arbitrary stages.

In all the embodiments disclosed in the current invention, 20 all the switches in some embodiments may be implemented as active switches consisting of cross points using SRAM cells or Flash memory cells. Similarly in other embodiments the switches may be implemented as passive switches consisting of cross points using anti-fuse based vias or connections provided by metal layer programming as in structured ASICs. In another embodiment, the switches may be implemented as in 3D-FPGAs. In another embodiment where ASIC placement & routing, the switches are actually used to determine if two wires are connected together or not; Alternatively they can be seen as switches during the implementation of the placement & routing however cross points in the cross state can be used as wire connections and in the bar state can be used as no connection of the wires.

Scheduling Method Embodiments for Multi-Stage Pyramid 35 Networks and Multi-Link Multi-Stage Pyramid Networks:

FIG. 9A shows a high-level flowchart of a scheduling method 900, in one embodiment executed to setup multicast and unicast connections in the generalized multi-link multistage pyramid networks $V_{mlink-p}(N_1, N_2, d, s)$ (for example 40 the network 800A of FIG. 8A) or generalized folded multistage pyramid networks $V_{fold-mlink-p}(N_1, N_2, d, s)$ (for example the network 800B of FIG. 8B) or any of the generalized multi-stage pyramid networks $V_p(N_1, N_2, d, s)$, generalized folded multi-stage pyramid networks $V_{fold-p}(N_1, N_2, d, 45)$ disclosed in this invention. According to this embodiment, a multicast connection request is received in act 910. Then the control goes to act 920.

In act 920, based on the inlet link and input switch of the multicast connection received in act 910, from each available 50 outgoing middle link of the input switch of the multicast connection, by traveling forward from middle stage 130 to middle stage 130+10*(Log₄N-2), the lists of all reachable middle switches in each middle stage are derived recursively. That is, first, by following each available outgoing middle 55 link of the input switch all the reachable middle switches in middle stage 130 are derived. Next, starting from the selected middle switches in middle stage 130 traveling through all of their available out going middle links to middle stage 140 all the available middle switches in middle stage 140 are derived. 60 This process is repeated recursively until all the reachable middle switches, starting from the outgoing middle link of input switch, in middle stage $130+10*(\text{Log}_d\text{N}-2)$ are derived. This process is repeated for each available outgoing middle link from the input switch of the multicast connection and separate reachable lists are derived in each middle stage from middle stage 130 to middle stage 130+10*(Log_dN-2) for all

58
the available outgoing middle links from the input switch.
Then the control goes to act 930.

In act 930, based on the destinations of the multicast connection received in act 910, from the output switch of each destination, by traveling backward from output stage 120 to middle stage 130+10*(Log₄N-2), the lists of all middle switches in each middle stage from which each destination output switch (and hence the destination outlet links) is reachable, are derived recursively. That is, first, by following each available incoming middle link of the output switch of each destination link of the multicast connection, all the middle switches in middle stage 130+10*(2*Log_dN-4) from which the output switch is reachable, are derived. Next, starting from the selected middle switches in middle stage 130+10* (2*Log_dN-4) traveling backward through all of their available incoming middle links from middle stage 130+10* (2*Log_dN-5) all the available middle switches in middle stage $130+10*(2*Log_{d}N-5)$ from which the output switch is reachable, are derived. This process is repeated recursively until all the middle switches in middle stage 130+10* $(\text{Log}_{i}N-2)$ from which the output switch is reachable, are derived. This process is repeated for each output switch of each destination link of the multicast connection and separate lists in each middle stage from middle stage 130+10* $(2*Log_dN-4)$ to middle stage 130+10*(Log_dN-2) for all the output switches of each destination link of the connection are derived. Then the control goes to act 940.

In act 940, using the lists generated in acts 920 and 930, particularly list of middle switches derived in middle stage 130+10*(Log₃N-2) corresponding to each outgoing link of the input switch of the multicast connection, and the list of middle switches derived in middle stage 130+10*(Log_dN-2) corresponding to each output switch of the destination links, the list of all the reachable destination links from each outgoing link of the input switch are derived. Specifically if a middle switch in middle stage 130+10*(Log_dN-2) is reachable from an outgoing link of the input switch, say "x", and also from the same middle switch in middle stage 130+10* (Log_xN-2) if the output switch of a destination link, say "y". is reachable then using the outgoing link of the input switch x, destination link y is reachable. Accordingly, the list of all the reachable destination links from each outgoing link of the input switch is derived. The control then goes to act 950.

In act 950, among all the outgoing links of the input switch, it is checked if all the destinations are reachable using only one outgoing link of the input switch. If one outgoing link is available through which all the destinations of the multicast connection are reachable (i.e., act 950 results in "yes"), the control goes to act 970. And in act 970, the multicast connection is setup by traversing from the selected only one outgoing middle link of the input switch in act 950, to all the destinations. Then the control transfers to act 990.

If act 950 results "no", that is one outgoing link is not available through which all the destinations of the multicast connection are reachable, then the control goes to act 960. In act 960, it is checked if all destination links of the multicast connection are reachable using two outgoing middle links from the input switch. According to the current invention, it is always possible to find at most two outgoing middle links from the input switch through which all the destinations of a multicast connection are reachable. So act 960 always results in "yes", and then the control transfers to act 980. In act 980, the multicast connection is setup by traversing from the selected only two outgoing middle links of the input switch in act 960, to all the destinations. Then the control transfers to act 990.

In act 990, all the middle links between any two stages of the network used to setup the connection in either act 970 or act 980 are marked unavailable so that these middle links will be made unavailable to other multicast connections. The control then returns to act 910, so that acts 910, 920, 930, 940, 5950, 960, 970, 980, and 990 are executed in a loop, for each connection request until the connections are set up.

In the example illustrated in FIG. 8A, four outgoing middle links are available to satisfy a multicast connection request if input switch is IS2, but only at most two outgoing middle links of the input switch will be used in accordance with this method. Similarly, although three outgoing middle links is available for a multicast connection request if the input switch is IS1, again only at most two outgoing middle links is used. The specific outgoing middle links of the input switch that are 15 chosen when selecting two outgoing middle links of the input switch is irrelevant to the method of FIG. 9A so long as at most two outgoing middle links of the input switch are selected to ensure that the connection request is satisfied, i.e. the destination switches identified by the connection request 20 can be reached from the outgoing middle links of the input switch that are selected. In essence, limiting the outgoing middle links of the input switch to no more than two permits the network V(N₁, N₂, d, s) to be operated in nonblocking manner in accordance with the invention.

According to the current invention, using the method **940** of FIG. **9**A, the network $V_p(N_1, N_2, d, s)$ or $V_{mlink-p}(N_1, N_2, d, s)$ is operated in rearrangeably nonblocking for unicast connections when $s \ge 1$, is operated in strictly nonblocking for unicast connections when $s \ge 2$, is operated in rearrangeably 30 nonblocking for multicast connections when $s \ge 2$, and is operated in strictly nonblocking for multicast connections when $s \ge 3$.

The connection request of the type described above in reference to method 900 of FIG. 9A can be unicast connection 35 request, a multicast connection request or a broadcast connection request, depending on the example. In case of a unicast connection request, only one outgoing middle link of the input switch is used to satisfy the request. Moreover, in method 900 described above in reference to FIG. 9A any 40 number of middle links may be used between any two stages excepting between the input stage and middle stage 130, and also any arbitrary fan-out may be used within each output stage switch, to satisfy the connection request.

As noted above method **900** of FIG. **9**A can be used to setup 45 multicast connections, unicast connections, or broadcast connection of all the networks $V_p(N, d, s)$, $V_{\textit{mlink-p}}(N, d, s)$, $V_p(N_1, N_2, d, s)$ or $V_{\textit{mlink-p}}(N_1, N_2, d, s)$ disclosed in this invention.

Scheduling Method Embodiments for Butterfly Fat Pyramid 50 Networks and Multi-Link Butterfly Fat Pyramid Networks:

FIG. 10A shows a high-level flowchart of a scheduling method 1000, in one embodiment executed to setup multicast and unicast connections in the generalized butterfly fat pyramid networks $V_{\textit{bfp}}(N_1, N_2, d, s)$, generalized folded butterfly fat pyramid networks $V_{\textit{fold-bfp}}(N_1, N_2, d, s)$, generalized multi-link butterfly fat pyramid networks $V_{\textit{mlink-bfp}}(N_1, N_2, d, s)$ or generalized folded multi-link butterfly fat pyramid networks $V_{\textit{fold-mlink-bfp}}(N_1, N_2, d, s)$ disclosed in this invention. According to this embodiment, a multicast connection 60 request is received in act 1010. Then the control goes to act 1020.

In act 1020, based on the inlet link and input switch of the multicast connection received in act 1010, from each available outgoing middle link of the input switch of the multicast 65 connection, by traveling forward from middle stage 130 to middle stage $130+10*(\text{Log}_dN-2)$, the lists of all reachable

60

middle switches in each middle stage are derived recursively. That is, first, by following each available outgoing middle link of the input switch all the reachable middle switches in middle stage 130 are derived. Next, starting from the selected middle switches in middle stage 130 traveling through all of their available out going middle links to middle stage 140 (reverse links from middle stage 130 to output stage 120 are ignored) all the available middle switches in middle stage 140 are derived. (In the traversal from any middle stage to the following middle stage only upward links are used and no reverse links or downward links are used. That is for example, while deriving the list of available middle switches in middle stage 140, the reverse links going from middle stage 130 to output stage 120 are ignored.) This process is repeated recursively until all the reachable middle switches, starting from the outgoing middle link of input switch, in middle stage 130+10*($Log_d N-2$) are derived. This process is repeated for each available outgoing middle link from the input switch of the multicast connection and separate reachable lists are derived in each middle stage from middle stage 130 to middle stage 130+10*(Log₂N-2) for all the available outgoing middle links from the input switch. Then the control goes to act 1030.

In act 1030, based on the destinations of the multicast 25 connection received in act 1010, from the output switch of each destination, by traveling backward from output stage 120 to middle stage $130+10*(\text{Log}_d\text{N}-2)$, the lists of all middle switches in each middle stage from which each destination output switch (and hence the destination outlet links) is reachable, are derived recursively. That is, first, by following each available incoming middle link of the output switch of each destination link of the multicast connection, all the middle switches in middle stage 130 from which the output switch is reachable, are derived. Next, starting from the selected middle switches in middle stage 130 traveling backward through all of their available incoming middle links from middle stage 140 all the available middle switches in middle stage 140 (reverse links from middle stage 130 to input stage 120 are ignored) from which the output switch is reachable, are derived. (In the traversal from any middle stage to the following middle stage only upward links are used and no reverse links or downward links are used. That is for example, while deriving the list of available middle switches in middle stage 140, the reverse links coming to middle stage 130 from input stage 110 are ignored.) This process is repeated recursively until all the middle switches in middle stage 130+10*(Log₃N-2) from which the output switch is reachable, are derived. This process is repeated for each output switch of each destination link of the multicast connection and separate lists in each middle stage from middle stage 130 to middle stage $130+10*(Log_dN-2)$ for all the output switches of each destination link of the connection are derived. Then the control goes to act 1040.

In act 1040, using the lists generated in acts 1020 and 1030, particularly list of middle switches derived in middle stage $130+10*(\text{Log}_d \text{N}-2)$ corresponding to each outgoing link of the input switch of the multicast connection, and the list of middle switches derived in middle stage $130+10*(\text{Log}_d \text{N}-2)$ corresponding to each output switch of the destination links, the list of all the reachable destination links from each outgoing link of the input switch are derived. Specifically if a middle switch in middle stage $130+10*(\text{Log}_d \text{N}-2)$ is reachable from an outgoing link of the input switch, say "x", and also from the same middle switch in middle stage $130+10*(\text{Log}_d \text{N}-2)$ if the output switch of a destination link, say "y", is reachable then using the outgoing link of the input switch x, destination link y is reachable. Accordingly, the list of all the

reachable destination links from each outgoing link of the input switch is derived. The control then goes to act 1050.

In act 1050, among all the outgoing links of the input switch, it is checked if all the destinations are reachable using only one outgoing link of the input switch. If one outgoing link is available through which all the destinations of the multicast connection are reachable (i.e., act 1050 results in "yes"), the control goes to act 1070. And in act 1070, the multicast connection is setup by traversing from the selected only one outgoing middle link of the input switch in act 1050, to all the destinations. Also the nearest U-turn is taken while setting up the connection. That is at any middle stage if one of the middle switch in the lists derived in acts 1020 and 1030 are common then the connection is setup so that the U-turn is made to setup the connection from that middle switch for all the destination links reachable from that common middle switch. Then the control transfers to act 1090.

If act 1050 results "no", that is one outgoing link is not available through which all the destinations of the multicast 20 connection are reachable, then the control goes to act 1060. In act 1060, it is checked if all destination links of the multicast connection are reachable using two outgoing middle links from the input switch. According to the current invention, it is always possible to find at most two outgoing middle links 25 from the input switch through which all the destinations of a multicast connection are reachable. So act 1060 always results in "yes", and then the control transfers to act 1080. In act 1080, the multicast connection is setup by traversing from the selected only two outgoing middle links of the input 30 switch in act 1060, to all the destinations. Also the nearest U-turn is taken while setting up the connection. That is at any middle stage if one of the middle switch in the lists derived in acts 1020 and 1030 are common then the connection is setup so that the U-turn is made to setup the connection from that 35 middle switch for all the destination links reachable from that common middle switch. Then the control transfers to act

In act 1090, all the middle links between any two stages of the network used to setup the connection in either act 1070 or 40 act 1080 are marked unavailable so that these middle links will be made unavailable to other multicast connections. The control then returns to act 1010, so that acts 1010, 1020, 1030, 1040, 1050, 1060, 1070, 1080, and 1090 are executed in a loop, for each connection request until the connections are set 45 up.

According to the current invention, using the method **1040** of FIG. **10**A, the network $V_{bfp}(N_1, N_2, d, s)$ or $V_{mlink-bfp}(N_1, N_2, d, s)$ is operated in rearrangeably nonblocking for unicast connections when $s \ge 1$, is operated in strictly nonblocking for unicast connections when $s \ge 2$, is operated in rearrangeably nonblocking for multicast connections when $s \ge 2$, and is operated in strictly nonblocking for multicast connections when $s \ge 3$.

The connection request of the type described above in reference to method 1000 of FIG. 10A can be unicast connection request, a multicast connection request or a broadcast connection request, depending on the example. In case of a unicast connection request, only one outgoing middle link of the input switch is used to satisfy the request. Moreover, in 60 method 1000 described above in reference to FIG. 10A any number of middle links may be used between any two stages excepting between the input stage and middle stage 130, and also any arbitrary fan-out may be used within each output stage switch, to satisfy the connection request.

As noted above method 1000 of FIG. 10A can be used to setup multicast connections, unicast connections, or broad-

62

cast connection of all the networks $V_{\textit{bfp}}(N, d, s)$, $V_{\textit{mlink-bfp}}(N, d, s)$, $V_{\textit{bfp}}(N_1, N_2, d, s)$ or $V_{\textit{mlink-bfp}}(N_1, N_2, d, s)$ disclosed in this invention.

Applications Embodiments

All the embodiments disclosed in the current invention are useful in many varieties of applications. FIG. 11A1 illustrates the diagram of 1100A1 which is a typical two by two switch with two inlet links namely IL1 and IL2, and two outlet links namely OL1 and OL2. The two by two switch also implements four crosspoints namely CP(1,1), CP(1,2), CP(2,1) and CP(2,2) as illustrated in FIG. 11A1. For example the diagram of 1100A1 may the implementation of middle switch MS(1, 1) of the diagram 100K of FIG. 1K where inlet link IL1 of diagram 1100A1 corresponds to middle link ML(1,1) of diagram 100K, inlet link IL2 of diagram 1100A1 corresponds to middle link ML(2,1) of diagram 1100A1 corresponds to middle link ML(2,1) of diagram 100K, outlet link OL2 of diagram 1100A1 corresponds to middle link ML(2,3) of diagram 100K.

1) Programmable Integrated Circuit Embodiments:

All the embodiments disclosed in the current invention are useful in programmable integrated circuit applications. FIG. 11A2 illustrates the detailed diagram 1100A2 for the implementation of the diagram 1100A1 in programmable integrated circuit embodiments. Each crosspoint is implemented by a transistor coupled between the corresponding inlet link and outlet link, and a programmable cell in programmable integrated circuit embodiments. Specifically crosspoint CP(1,1) is implemented by transistor C(1,1) coupled between inlet link IL1 and outlet link OL1, and programmable cell P(1,1); crosspoint CP(1,2) is implemented by transistor C(1,1)2) coupled between inlet link IL1 and outlet link OL2, and programmable cell P(1,2); crosspoint CP(2,1) is implemented by transistor C(2,1) coupled between inlet link IL2 and outlet link OL1, and programmable cell P(2,1); and crosspoint CP(2,2) is implemented by transistor C(2,2) coupled between inlet link IL2 and outlet link OL2, and programmable cell P(2,2).

If the programmable cell is programmed ON, the corresponding transistor couples the corresponding inlet link and outlet link. If the programmable cell is programmed OFF, the corresponding inlet link and outlet link are not connected. For example if the programmable cell P(1,1) is programmed ON, the corresponding transistor C(1,1) couples the corresponding inlet link IL1 and outlet link OL1. If the programmable cell P(1,1) is programmed OFF, the corresponding inlet link IL1 and outlet link OL1 are not connected. In volatile programmable integrated circuit embodiments the programmable cell may be an SRAM (Static Random Address Memory) cell. In non-volatile programmable integrated circuit embodiments the programmable cell may be a Flash memory cell. Also the programmable integrated circuit embodiments may implement field programmable logic arrays (FPGA) devices, or programmable Logic devices (PLD), or Application Specific Integrated Circuits (ASIC) embedded with programmable logic circuits or 3D-FPGAs.

FIG. 11A2 also illustrates a buffer B1 on inlet link IL2. The signals driven along inlet link IL2 are amplified by buffer B1. Buffer B1 can be inverting or non-inverting buffer. Buffers such as B1 are used to amplify the signal in links which are usually long.

2) One-Time Programmable Integrated Circuit Embodiments:

All the embodiments disclosed in the current invention are useful in one-time programmable integrated circuit applica-

tions. FIG. 11A3 illustrates the detailed diagram 1100A3 for the implementation of the diagram 1100A1 in one-time programmable integrated circuit embodiments. Each crosspoint is implemented by a via coupled between the corresponding inlet link and outlet link in one-time programmable integrated 5 circuit embodiments. Specifically crosspoint CP(1,1) is implemented by via V(1,1) coupled between inlet link IL1 and outlet link OL1; crosspoint CP(1,2) is implemented by via V(1,2) coupled between inlet link IL1 and outlet link OL2; crosspoint CP(2,1) is implemented by via V(2,1) coupled between inlet link IL2 and outlet link OL1; and crosspoint CP(2,2) is implemented by via V(2,2) coupled between inlet link IL2 and outlet link OL2.

If the via is programmed ON, the corresponding inlet link and outlet link are permanently connected which is denoted 15 by thick circle at the intersection of inlet link and outlet link. If the via is programmed OFF, the corresponding inlet link and outlet link are not connected which is denoted by the absence of thick circle at the intersection of inlet link and outlet link. For example in the diagram 1100A3 the via V(1,1) 20 is programmed ON, and the corresponding inlet link IL1 and outlet link OL1 are connected as denoted by thick circle at the intersection of inlet link IL1 and outlet link OL1; the via V(2,2) is programmed ON, and the corresponding inlet link IL2 and outlet link OL2 are connected as denoted by thick 25 circle at the intersection of inlet link IL2 and outlet link OL2; the via V(1,2) is programmed OFF, and the corresponding inlet link IL1 and outlet link OL2 are not connected as denoted by the absence of thick circle at the intersection of inlet link IL1 and outlet link OL2; the via V(2,1) is pro- 30 grammed OFF, and the corresponding inlet link IL2 and outlet link OL1 are not connected as denoted by the absence of thick circle at the intersection of inlet link IL2 and outlet link OL1. One-time programmable integrated circuit embodiments may be anti-fuse based programmable integrated cir- 35 cuit devices or mask programmable structured ASIC devices. 3) Integrated Circuit Placement and Route Embodiments:

All the embodiments disclosed in the current invention are useful in Integrated Circuit Placement and Route applications, for example in ASIC backend Placement and Route 40 tools. FIG. 11A4 illustrates the detailed diagram 1100A4 for the implementation of the diagram 1100A1 in Integrated Circuit Placement and Route embodiments. In an integrated circuit since the connections are known a-priori, the switch and crosspoints are actually virtual. However the concept of virtual switch and virtual crosspoint using the embodiments disclosed in the current invention reduces the number of required wires, wire length needed to connect the inputs and outputs of different netlists and the time required by the tool for placement and route of netlists in the integrated circuit.

Each virtual crosspoint is used to either to hardwire or provide no connectivity between the corresponding inlet link and outlet link. Specifically crosspoint CP(1,1) is implemented by direct connect point DCP(1,1) to hardwire (i.e., to permanently connect) inlet link IL1 and outlet link OL1 55 which is denoted by the thick circle at the intersection of inlet link IL1 and outlet link OL1; crosspoint CP(2,2) is implemented by direct connect point DCP(2,2) to hardwire inlet link IL2 and outlet link OL2 which is denoted by the thick circle at the intersection of inlet link IL2 and outlet link OL2. 60 The diagram 1100A4 does not show direct connect point DCP(1,2) and direct connect point DCP(1,3) since they are not needed and in the hardware implementation they are eliminated. Alternatively inlet link IL1 needs to be connected to outlet link OL1 and inlet link IL1 does not need to be 65 connected to outlet link OL2. Also inlet link IL2 needs to be connected to outlet link OL2 and inlet link IL2 does not need

to be connected to outlet link OL1. Furthermore in the example of the diagram 1100A4, there is no need to drive the signal of inlet link IL1 horizontally beyond outlet link OL1 and hence the inlet link IL1 is not even extended horizontally until the outlet link OL2. Also the absence of direct connect point DCP(2,1) illustrates there is no need to connect inlet link IL2 and outlet link OL1.

In summary in integrated circuit placement and route tools, the concept of virtual switches and virtual cross points is used during the implementation of the placement & routing algorithmically in software, however during the hardware implementation cross points in the cross state are implemented as hardwired connections between the corresponding inlet link and outlet link, and in the bar state are implemented as no connection between inlet link and outlet link.

3) More Application Embodiments:

All the embodiments disclosed in the current invention are also useful in the design of SoC interconnects, Field programmable interconnect chips, parallel computer systems and in time-space-time switches.

Numerous modifications and adaptations of the embodiments, implementations, and examples described herein will be apparent to the skilled artisan in view of the disclosure.

What is claimed is:

1. An electrical network on an electrical substrate comprising a plurality of sub-networks corresponding to blocks arranged in a two dimensional layout for a total of $a \times b$ said sub-networks with one side of said layout having the size of a sub-networks and the other side of said layout having the size of b sub-networks where $a \ge 1$ and $b \ge 1$, and

Said electrical network on an electrical substrate comprising at most N_1 inlet links and at most N_2 outlet links where $N_1 \ge 1$ and $N_2 \ge 1$ wherein either

 $N_2=N_1\times p_2$, $N_1=(a\times b)\times p$, and said each sub-network comprising at most p inlet links and at most $p\times p_2$ outlet links; or

 $N_1=N_2\times p_1$, $N_2=(a\times b)\times p$, and said each sub-network comprising at most p outlet links and at most $p\times p_1$ inlet links, and

Said each sub-network comprising at most y stages, starting from the lowest stage of 1 to the highest stage of y, where y≥1; and

Said each stage comprising at least one switch of size d×d, where d≥2 and each said switch of size d×d having d incoming links and d outgoing links; and

Said each sub-network may not be comprising the same number of said inlet links and may not be comprising the same number of said outlet links; Said each sub-network may not be comprising the same number of said stages; Said each stage may not be comprising the same number of switches; And said each switch in said each stage may not be of the same size d,

Said incoming links and said outgoing links in each said switch in said each stage of said each sub-network comprising a plurality of forward connecting links connecting from switches in lower stage to said switches one of succeeding higher stages, and also comprising a plurality of backward connecting links connecting from said switches in higher stage to said switches one of preceding lower stage; and

Said forward connecting links comprising a plurality of straight links connecting from a said switch in a said stage in a said sub-network to a said switch in another stage in the same said sub-network and also comprising a plurality of cross links connecting from a said switch in a said stage in a sub-network to a said switch in another said stage in a different said sub-network, and

Said backward connecting links comprising a plurality of straight links connecting from a said switch in a said stage in a said sub-network to a said switch in another said stage in the same said sub-network and also comprising a plurality of cross links connecting from a said switch in a said stage in a said sub-network to a said switch in another said stage in a different said sub-network,

said all cross links are connecting as either vertical or horizontal links between said switches between each 10 two different said sub-networks, which are either placed vertically above or below, or placed horizontally to the left or to the right.

- 2. The electrical network on an electrical substrate of claim 1, wherein said cross links in succeeding stages are connecting as alternative vertical and horizontal links between switches in said sub-networks.
- 3. The electrical network on an electrical substrate of claim 2, wherein said all horizontal cross links between switches in any two corresponding said succeeding stages are substantially of equal length and said vertical cross links between switches in any two corresponding said succeeding stages are substantially of equal length in the entire said electrical network on an electrical substrate, and

the shortest horizontal cross links are connecting at the 25 lowest stage and between switches in two nearest neighboring said sub-networks, and length of the horizontal cross links is doubled in each succeeding stage; and the shortest vertical cross links are connecting at the lowest stage and between switches in two nearest neighboring 30 said sub-networks, and length of the vertical cross links is doubled in each succeeding stage.

- 4. The electrical network on an electrical substrate of claim

 2, wherein said all horizontal cross links between switches of
 a sub-network one in each said two sub-networks in any two
 35
 corresponding said succeeding stages are connected so that
 the two nearest neighbors are connected first and then the next
 two nearest neighbors are connected in the remaining subnetworks which is repeated until the switches in all the subnetworks are connected, and said all vertical cross links
 40
 between switches of a sub-network one in each said two
 sub-networks in any two corresponding said succeeding
 stages are connected so that the two nearest neighbors are
 connected first and then the next two nearest neighbors are
 connected in the remaining sub-networks which is repeated
 45
 until the switches in all the sub-networks are connected in the
 entire said electrical network on an electrical substrate.
- 5. The electrical network on an electrical substrate of claim 3, wherein $y \ge (\log_2(N_1))$ when $N_2 = N_1 \times p_2$, or $y \ge (\log_2(N_2))$ when $N_1 = N \times p_2$ so that the length of the horizontal cross links 50 in the highest stage is equal to half the size of the horizontal size of said two dimensional grid of sub-networks, and the length of the vertical cross links in the highest stage is equal to half the size of the vertical size of said two dimensional grid of sub-networks.
- 6. The electrical network on an electrical substrate of claim 5, wherein d=q in all the switches, where q≥2 and there is only one switch in each said stage in each said sub-network connecting said forward connecting links and there is only one switch in each said stage in each said sub-network connecting said backward connecting links and said electrical network on an electrical substrate is rearrangeably nonblocking for unicast Benes network of radix q with full bandwidth.
- 7. The electrical network on an electrical substrate of claim 5, wherein d=q in all the switches, where q≥2 and there are at 65 least two switches in each said stage in each said sub-network connecting said forward connecting links and there are at

66

least two switches in each said stage in each said sub-network connecting said backward connecting links and said electrical network on an electrical substrate is strictly nonblocking for unicast Benes network and rearrangeably nonblocking for arbitrary fan-out multicast Benes network of radix q with full bandwidth.

- 8. The electrical network on an electrical substrate of claim 5, wherein d=q in all the switches, where q≥2 and there are at least three switches in each said stage in each said sub-network connecting said forward connecting links and there are at least three switches in each said stage in each said sub-network connecting said backward connecting links and said electrical network on an electrical substrate is strictly non-blocking for arbitrary fan-out multicast Benes network of radix q with full bandwidth.
- 9. The electrical network on an electrical substrate of claim 3, wherein $y \ge (\log_2(N_1))$ when $N_2 = N_1 \times p_2$, or $y \ge (\log_2(N_2))$ when $N_1 = N_2 \times p_2$ so that the length of the horizontal cross links in the highest stage is equal to half the size of the horizontal size of said two dimensional grid of sub-networks and the length of the vertical cross links in the highest stage is equal to half the size of the vertical size of said two dimensional grid of sub-networks, and

said each sub-network further comprising a plurality of U-turn links within switches in each of said stages in each of said sub-networks.

- 10. The electrical network on an electrical substrate of claim 9, wherein d=q in all the switches, where q≥2 and there is only one switch in each said stage in each said sub-network connecting said forward connecting links and there is only one switch in each said stage in each said sub-network connecting said backward connecting links and said electrical network on an electrical substrate is rearrangeably nonblocking for unicast butterfly fat tree network of radix q with full bandwidth.
- 11. The electrical network on an electrical substrate of claim 9, wherein d=q in all the switches, where q≥2 and there are at least two switches in each said stage in each said sub-network connecting said forward connecting links and there are at least two switches in each said stage in each said sub-network connecting said backward connecting links and said electrical network on an electrical substrate is strictly nonblocking for unicast butterfly fat tree network and rearrangeably nonblocking for arbitrary fan-out multicast butterfly fat tree network of radix q with full bandwidth.
- 12. The electrical network on an electrical substrate of claim 9, wherein d=q in all the switches, where q≥2 and there of are at least three switches in each said stage in each said sub-network connecting said forward connecting links and there are at least three switches in each said stage in each said sub-network connecting said backward connecting links and said electrical network on an electrical substrate is strictly nonblocking for arbitrary fan-out multicast butterfly fat tree network of radix q with full bandwidth.
 - 13. The electrical network on an electrical substrate of claim 1, wherein said switches comprising active and reprogrammable cross points and said each cross point is programmable by an SRAM cell or a Flash Cell, or

Said switches are implemented by multiplexers and said each multiplexer is controlled by an SRAM cell or a Flash cell.

14. A method for setting up one or more new electrical multicast connections in a network comprising a plurality of sub-networks corresponding to blocks arranged in a two dimensional layout for a total of a×b said sub-networks with

one side of said layout having the size of a sub-networks and the other side of said layout having the size of b sub-networks where $a\ge 1$ and $b\ge 1$ and

Said network comprising at most N_1 inlet links and at most N_2 outlet links where $N_1>1$ and $N_2>1$ wherein either

 $N_2=N_1\times p_2$, $N_1=(a\times b)\times p$, and said each sub-network comprising at most p inlet links and at most $p\times p_2$ outlet links; or

 $N=N_2\times p_1$, $N_2=(a\times b)\times p$, and said each sub-network comprising at most p outlet links and at most $p\times p_1$ inlet links, 10 and

Said each sub-network comprising at most y stages, starting from the lowest stage of 1 to the highest stage of y, where $y \ge 1$; and

Said each stage comprising at least one switch of size d×d, 15 where d≥2 and each said switch of size d×d having d incoming links and d outgoing links; and

Said each sub-network may not be comprising the same number of said inlet links and may not be comprising the same number of said outlet links; Said each sub-network 20 may not be comprising the same number of said stages; Said each stage may not be comprising the same number of switches; And said each switch in said each stage may not be of the same size d.

Said incoming links and said outgoing links in each said 25 switch in said each stage of said each sub-network comprising a plurality of forward connecting links connecting from switches in lower stage to said switches one of succeeding higher stages, and also comprising a plurality of backward connecting links connecting from said 30 switches in higher stage to said switches one of preceding lower stages; and

Said forward connecting links comprising a plurality of straight links connecting from a said switch in a said stage in a said sub-network to a said switch in another 35 stage in the same said sub-network and also comprising a plurality of cross links connecting from a said switch in a said stage in a sub-network to a said switch in another said stage in a different said sub-network, and

Said backward connecting links comprising a plurality of 40 straight links connecting from a said switch in a said stage in a said sub-network to a said switch in another said stage in the same said sub-network and also comprising a plurality of cross links connecting from a said switch in a said stage in a said sub-network to a said 45 switch in another said stage in a different said sub-network.

Said all cross links are connecting as either vertical or horizontal links between said switches between each two different said sub-networks, which are either placed 50 vertically above or below, or placed horizontally to the left or to the right, said method comprising:

receiving an electrical multicast connection at said one of inlet links:

fanning out said electrical multicast connection through 55 one or more of the switches having said inlet link as input, to set up said electrical multicast connection to a

68

plurality of outlet links, wherein said plurality of outlet links are specified as destinations of said electrical multicast connection, wherein switches are available in one or more sub-networks including the sub-network having said inlet link and sub-networks having said outlet links with said switches belonging to one or more said stages of said sub-networks and also the straight links or cross links are available which are connecting said switches of said all sub-networks;

wherein a connection exists through said network and said method further comprising:

if necessary, changing said connection to pass through another plurality of said switches of said stages of said sub-networks, act hereinafter "rearranging connection".

15. The method of claim 14 further comprising:

disconnecting a plurality of previously set up electrical multicast connections when at least one of said switches of said stages of said sub-networks is used by both said new electrical multicast connection and said plurality of previously set up electrical multicast connections and;

setting up said plurality of previously set up electrical multicast connections as other new electrical multicast connections, through another plurality of said switches of said stages of said sub-networks.

16. The method of claim 14 further comprising:

repeating said acts of disconnecting said plurality of previously set up connections and setting up as said other new electrical multicast connections for all the remaining previously set up connections.

17. The method of claim 14 further comprising:

by setting up said new electrical multicast connection through another plurality of said switches of said stages of said sub-networks which are already in use by one or more existing electrical multicast connections (hereinafter called "incompatible existing connections"); and

disconnecting said incompatible existing connections.

18. The method of claim 14 further comprising:

for all said incompatible existing connections recursively repeating said acts of disconnecting and setting up connections, until all said incompatible existing electrical multicast connections are set up.

prising a plurality of cross links connecting from a said switch in a said stage in a said sub-network to a said sub-network in another said stage in a different said sub-network, and all cross links are connecting as either vertical or horizontal links between said switches between each

20. The method of claim 14 wherein any of said acts of checking, setting, disconnecting and rearranging are performed recursively in a plurality of passes or iterations until none of said plurality of said switches of said stages of said sub-networks are used by more than one said electrical multicast connection.

* * * * *